博碩士論文 86322070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.221.27.56
姓名 張藝耀(Yi-Yao Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 斜坡滑動土體底部之流體化過程研究
(The mobilization process of landslide blocks at different slopes)
相關論文
★ 不均勻圓形橋墩之局部沖刷研究★ 砂礫河床之跌水沖刷分析
★ 土石流潛勢判定模式及土石壩滲流破壞之研究★ 港池污染擴散影響因子之探討
★ 不均勻橋墩及群樁基礎之局部沖刷研究★ 邊牆射流及尾檻對砂質底床之沖刷研究
★ 砂粒受水平振動行為之研究★ 土石流發生之水文特性探討
★ 不均勻橋墩與套環保護工法之局部沖刷研究★ 護坦及尾檻下游之局部沖刷分析
★ 橋台束縮與局部沖刷之研究★ 慢顆粒流之輸送帶實驗與影像分析
★ 均勻入滲時坡面地下水流之理論解析★ 尾檻設置對下游之局部沖刷效應
★ 二維斜坡顆粒流之輸送帶實驗與分析★ 斜坡土體滲流破壞引致土石流之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文探討引發山崩的因素,以及山崩的土體滑動過程中之破壞特性與與能量傳輸機制,探討斜坡土體崩解底部流體化過程,以期對於坡地災害防治能有所貢獻。本文從邊坡的穩定、受地震破壞之流體化特性、侷限顆粒之壓力特性,並由侷限顆粒流體化實驗探討山崩的土體滑動過程中之崩解機制。本文設計出侷限顆粒同步實驗,使侷限顆粒之運動可視為獨立運動,以更接近滑動塊體的崩解運動。本文發現流體化層顆粒具滾動特性而非滑動,這特性明顯降低侷限顆粒體摩擦組力,流體化層的厚度對侷限顆粒體摩擦阻力有顯著的影響,單層流體化層之侷限顆粒體的摩擦阻力明顯高於俱多層流體化層侷限顆粒體。侷限顆粒體底部顆粒的運動可分為兩個階段,第一階段由滑動發展為滾動,摩擦係數隨著速度增加而遞減;第二階段為滾動狀態並發展出流體化層,摩擦係數隋著速度的增加而增加,為線性變化。底部的開口越大流體化層越厚,整體顆粒的運動速度越快,實驗發現局限顆粒流體化層最高可達四層。
摘要(英) The slope failures and the mobilization process of landslide blocks at different slopes are examined in this study by employing both theoretical analysis and experimental work to be helpful for the prevention and prediction of slope hazard mitigation. The study includes slope stability analyses, the fluidized mechanism of the landslide mass at bottom and the pressure analyses of confined dry granular material at bottom in order to know the mobilization process of landslide blocks. The mobilization process of landslide blocks at different slopes are examined by experimental work and theoretical analysis in this study. A special synchronized observation system for the mobilization block is developed in this study. The bottom mobilization process has two stages. The first stage is the slide development and the second stage is dominated by the rolling mechanism. The mobilization process is controlled by the failure zone (i.e. the open slit) near the bottom. Larger failure zone will generate faster failure process. The mobilization process initiates around 0.5 -1.0 second after the movement. The granular temperature is mainly intensified in the fluidized zone, which is about 4 particles in thickness.
關鍵字(中) ★ 顆粒流
★ 顆粒溫度
★ 土石流
★ 侷限顆粒
關鍵字(英) ★ debris flow
★ granular temperature
★ granular flow
★ confined granular material
論文目次 目錄
摘要…………………………………………………………………………………… I
Abstract………………………………………………………………………………II
誌謝…………………………………………………………………………………III
目錄…………………………………………………………………………………IV
表目錄………………………………………………………………………………VI
圖目錄……………………………………………………………………………VII
第一章 緒論………………………………………………………………………… 1
1.1 研究動機…………………….…………….. …………….……………1
1.2 研究方法…………………………………………….………………. 2
1.3 研究內容……….………………………………………………….…2
第二章 文獻回顧…………………………………………………………………… 4
2.1乾燥顆粒特性……………………………………….………………… 4
2.2 加速度對顆粒堆積之影響………………………………..…………. 4
2.3 侷限顆粒之特性………………..……………………………….….… 6
2.4顆粒流體化之特性………………..……………………………….… 6
2.5滑動塊體破壞之特性………………..…………………………….… 7
第三章 理論分析…………………………………………………………………… 8
3.1邊坡穩定之分析…………………….……..…….. …………………… 8
3.1.1二維堆積圓柱最大傾斜角分析………….…………..…………. 8
3.1.2三維顆粒堆積最大傾斜角度分析……………………………11
3.1.3地震對邊坡穩定之分析………………………………………14
3.2 侷限顆粒壓力分佈之分析………………..………………….… 20
3.3侷限顆粒運動特性分析……………………………………….… 22
3.3.1侷限顆粒不受滑車影響之分析………………………….… 22
3.3.2侷限顆粒摩擦阻力係數之推求………………………….… 23
3.4斜坡土體崩落及流體化分析…………………………24
第四章 實驗設計……………………………………………………………… 29
4.1侷限顆粒底部壓力實驗…..………………………..……………… 29
4.2 滑動侷限顆粒崩解實驗…………………….. ….……………….… 29
4.2.1實驗設備各部位介紹…………………….……………….… 30
4.2.2 物理量計算方法……………………….……………….… 30
第五章 實驗結果與討論…………………………………………………………… 32
5.1侷限顆粒受壓底部壓力特性…..……………………..……………… 32
5. 2侷限顆粒流體化特性……………….. ….. ……..………………….… 32
5. 2.1定拉力實驗………………..…..……..…..…..………………….… 32
5. 2.2同步實驗……………….. ….. ……..………………….… 35
第六章 結論與建議…………………………………………………………… 36
參考文獻……………..………….. …..…....…………………..……….. …..…....37
參考文獻 岡本奉三,「防震工程學」,日本ohm 社,日本(1971).
中華水土保持學會(1994),「水土保持手冊工程篇」,第1-14~1-15 頁。
周憲德、廖偉民,「孔隙水壓對溪床土石流發生機制之影響」,中國水土保持學刊,第二十九卷,第三期,第211-217頁(1998)。
周憲德、張藝耀,「三維顆粒堆積受水平振動之斜坡傾角變化」,力學期刊系列B,第十六卷,第二期,第153-160頁(2000)。
周憲德、張藝耀,「斜坡堆積圓球及圓柱受水平振動時之傾斜角分析」,中國土木水利工程學刊,第十六卷,第一期,第145-154頁 (2004) 。
Aguirre, M.A., Nerone , N., Calvo, A., Ippolito, I., and Bideau, D., “Influence of the number of layers on the equilibrium of a granular packing, “ Physical Review E , Vol. 62 , No. 1 , pp. 738-743 (2000).
Albert, R., Albert, I., Hornbaker, D., Schiffer, P., and Baraba’si, A.-L., ”Maximun angle of stability in wet and dry spherical granular media,“ Physical Review E , Vol. 56 , No. 6 , pp. R6271-R6274 (1997).
Ashida, K., Egashira, S., and Ohtsuki, H., “Dynamic behavior of a soil mass produced by slope failure,” 京大防災研究所年報 第26號 B-2 (昭58.4) pp.315-325 (1983).
Chen, Rong-Herr (1990), "The slope failure and mitigation methods for gravel formations,", Report on disaster prevention for National Science Council, Taiwan, R.O.C.
Evesque, P., and Rajchenbach, J., ”Instability in a Sand Heap,” Physical Review Letters, Vol. 62, No. 1, pp. 44-46(1989)
Hutchinson, J.N., ”A sliding-consolidation model for flow slides,” Can. Geotech. J., Vol. 23. 115-126(1986)
Hutter, K.,” Hydrology of disasters,” pp.352-375.(1996)
Iverson , R. M., “ The physics of debris flows ,“ Reviews of Geophysics, Vol.35, No.3 pp.245-296(1997)
Iverson , R. M., Reid , M. E., and LaHusen , R. G., “ Debris-flow mobilization from landslides ,“ Annu. Rev. Earth Planet. Sci, Vol. 25, pp.85-138(1997)
Iverson, R. M., Reid , M. E., Iverson , N. R. R. G. LaHusen,1M. Logan,1 J. E. Mann, Brien, D. L., “Acute sensitivity of landslide rates to initial soil porosity”, Science 290, pp. 513–516.(2000)
Iverson ,R. M., “ Regulation of landslide motion by dilatancy and pore pressure feedback ,“ Journal of geophysical research, Vol. 110, pp.1-16(2005)
Jaeger, H.M., Liu, C.-H., and Nagel, S. R., ”Relaxation at the Angle of Repose,” Physical Review Letters, Vol. 62, No. 1, pp. 40-43(1989).
M.-C. Chou, Y. Wang and K. Hutter,”Influence of obstacles on rapid granular flows” Acta Mechanica, Vol. 175pp. 105-122(2005).
M. Martinelli, Jr., T.E. Lang and A.I. Mears,” Calculations of avalanche friction coefficients from field data” Journal of Glaciology, vol.26 No.94.pp.109-119(1980)
Moreau, J.J.” Some numerical methods in multibody dynamics: application to granular material,” Eur. J. Mech. A/solids, Vol. 13, No. 4-suppl., pp. 93-114(1994).
Onda, Y., and Matsukura, Y., ”Mechanism for the Instability of Slopes Composed of Granular Material,” Earth Surface and Landforms, Vol. 22, pp. 401-411(1997).
Othmar Buser and Hans Frutiger,” Observed maximum run-out distance of snow avalanches and the determination of the friction coefficients µ and ξ,” Journal of Glaciology, vol.26 No.94.pp.121-130(1980)
Reynolds, O., ”On The dilatancy of media composed of rigid particles in contact , with experimental illustrations,” Philo. Mag. S.5.Vol. 20, pp. 469-481(1885).
Ristow, G.H., Strassburger, G., and Rehberg, I. ” Phase-Diagram and Scaling of Granular-Materials Under Horizontal Vibrations,” Physical Review Letter, Vol. 79, pp. 833-836 (1997).
Savage, S.B. and Iverson, R.M. “ Surge dynamics coupled to pore-pressure evolution in debris flows.” In: R. Chen, Editor, In Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Millepress, Rotterdam (2003), pp. 503–514.
Seed, H, B., and Goodman, R. E.,” Slope stability in cohesionless materials during earthquakes ,“Department of Civil Engineering , U.C. Berkeley(1963).
Salm, B.,” Flow, flow transition and runout distances of flowing avalanches,” Annals of Glaciology, vol.18, pp.221-226(1993)
Staron, L., Vilotte, J.-P., and Radjai, F.” Preavalanche Instabilities in a Granular Pile,” Physical Review Letter, Vol. 89, No. 20,pp. 204302-1~4 (2002).
Takahashi, T. (2000), “Initiation and flow of various types of debris-flow”, Proc. Second International Conference, Debris-Flow Hazards Mitigation : Mechanics, Prediction, and Assessment, Taipei, Taiwan. pp.15-25.
指導教授 周憲德(Hsien-Ter Chou) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明