博碩士論文 966201015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.119.108.233
姓名 張廷豪(Ting-hao Chang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討
(Application of multi-filter rotating shadowband radiometer and Sunphotometer: A study of aerosol optical properties in Mt.Lulin during 2006-2008 )
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用★ 鹿林山與中壢氣膠光學垂直特性之監測與比較
★ 北台灣冬季層狀雲化學特性分析★ 鹿林山空氣品質背景監測站之背景值分析
★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析★ 不同地域雲凝結核微物理特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究乃利用多重濾鏡旋轉輻射儀(MFRSR)與太陽輻射儀(CIMELs)
觀測2006年4月至2008年12月鹿林山大氣背景站(2862 m,23.47°N,
120.87°E)氣膠光學特性。並參考Krotkov et al. (2005a)概念,將MFRSR所觀測之直射通量值反演為氣膠光學厚度(AOD500nm)。每年春季期間(3-5月),AOD500nm、CO與PM10較高,此期間主要受到東南亞生質燃燒污染影響。AOD500nm 與PM10月平均變化趨勢相似,其最高值皆發生在3月份。Ångström exponent月平均值在5-8月相對較低(MFRSR:0.35-0.76, CIMELs:0.73-0.91);冬季12-3月較(MFRSR:1.15-2.14, CIMELs:1.63-2.24),其相對濕度與垂直水氣量則呈現相反之趨勢。AOD500nm之日變化在中午過後有上升的現象,與PM10濃度變化趨勢類似,而Ångström exponent於午後則明顯驟降,其相對濕度於午後則逐漸攀升。AOD500nm 與 PM10 在相對高壓天氣狀況下有較好相關性,而高度相關發生在冬季(R:0.82-0.86);相關性較差則在夏季與秋季。利用HYSPLIT後推軌跡模式將氣團來源分類,其中來自乾淨海洋之氣膠造成的AOD500nm值最小,來自東南亞則大。Ångström exponent最小值為來自海洋性氣團之氣膠;Ångström exponent最大值則來自高層之氣團。在沙塵與生質燃燒事件中,伴隨氣團之AOD500nm值明顯上升,分別約為海洋性氣團的2.7倍與18倍。由粒徑分布與Ångström exponent值得知沙塵氣膠為粗粒徑的顆粒較多;生質燃燒氣膠則是細粒徑顆粒較多。直射通量與散射通量之比值在污染事件下明顯小於乾淨背景值,而各事件中最大之比值分別為7.42(沙塵事件)、1.41(生質燃燒)與15.32(乾淨背景),表示在生質燃燒事件中垂直氣柱之氣膠容載量(Aerosol loading)最大,而乾淨環境下氣膠總容載量則最小。
摘要(英) The purpose of this study is to study the vertical optical properties of aerosols observed at Mt. Lulin Atmospheric Background Station (2862 m; 23.47°N, 120.87°E) from April 2006 to December 2008 with simultaneous measurements with a multi-filter rotating shadowband radiometer (MFRSR) and a Cimel’s sunphotometer (CIMELs). Solar direct flux data of MFRSR measurements were retrieved to obtain aerosol optical depth (AOD500nm), based on Krotkov et al. (2005a). The AOD500nm, CO and PM10 were relatively high in spring (March-May), due to the impact of biomass burning from Southeast Asia. The variation of monthly mean AOD500nm and PM10 was similar, with the maximum values occurring in March. Monthly mean Ångström exponent values were lower (MFRSR:0.35-0.76, CIMELs:0.73-0.91) between May and August and higher between December and March (MFRSR:1.15-2.14, CIMELs:1.63-2.24). However, relative humidity and columnar water vapor showed an opposite trend. Besides, the AOD500nm increased in the afternoon, as well as the PM10. The Ångström exponent significantly decreased in the afternoon, but relative humidity gradually increased.
AOD500nm and PM10 had a better correlation, relative high-pressure weather conditions under particularly in winter (R:0.82-0.86), while a poor correlation in the summer and autumn. The HYSPLIT trajectory analysis helped classify air mass sources. The minimum AOD500nm was associated with the air mass from the ocean, while maximum value was associated with the air mass from Southeast Asia. The minimum and maximun Ångström exponent were associated with the air mass from the ocean and from the high-level, respectively. The AOD500nm evidently increased during the dust and biomass burning events, and was about 2.7 times and 18 times that in maritime air mass. Based on particle size distribution and Ångström exponent, the dust aerosol had a large mode, while biomass burning aerosol had a fine mode. The ratio of direct flux to diffuse flux in the dust event, biomass burning, and background were 7.42, 1.41, and 15.32, respectively, indicating that the largest vertical column as aerosol loading appeared in the biomass burning event, while the smallest occurred in the clean background air.
關鍵字(中) ★ 太陽輻射儀
★ 旋轉輻射儀
★ 鹿林山
★ 氣膠
關鍵字(英) ★ aerosol
★ shadowband
★ optical depth
★ sunphotometer
論文目次 摘要..... I
目錄..... VI
表目錄... VIII
圖目錄... IX
第一章 前言....... 1
1.1 研究動機...... 1
1.2 研究目的...... 3
第二章 文獻回顧... 5
2.1 氣膠之輻射效應...... 5
2.2 氣膠光學垂直特性.... 8
2.3 東南亞生質燃燒...... 12
2.4 亞洲沙塵暴. 13
第三章 研究方法... 16
3.1 研究架構... 16
3.2 觀測時間與測站位置.. 16
3.3 實驗設備與觀測原理.. 17
3.3.1 太陽輻射儀.. 17
3.3.2 多重濾鏡旋轉輻射儀........ 18
3.4 氣膠光學特徵參數....... 19
3.4.1 氣膠光學厚度 .........19
3.4.2 Ångström exponent .........20
第四章 反演方法... 21
4.1 I0與AOD之反演方法... 21
4.2 濾雲法..... 24
第五章 結果與討論.......... 27
5.1 鹿林山背景站氣膠光學參數之相對發生頻率分布........ 27
5.2 鹿林山背景站氣膠光學垂直特性之統計分析... 28
5.2.1 月平均與年際變化..... 28
5.2.2 季節變化 .........31
5.2.3 日變化............... 32
5.3 氣膠光學厚度與PM10之相關性...... 33
5.4 境外氣膠對鹿林山背景站氣膠光學垂直特性之影響... 34
5.5 個案分析... 36
5.5.1 沙塵個案.... 37
5.5.2 生質燃燒個案..... 38
5.6 背景狀態、生質燃燒與沙塵個案討論 .........40
第六章 結論與未來展望...... 42
6.1 結論.......... 42
6.2 未來展望...... 45
參考文獻 .........47
參考文獻 林和駿,林博雄及劉紹臣(2005), 台灣南北城市氣膠光學厚度的特徵中華民國國際氣膠科技研討會,203-212。
林能暉、黃景祥及彭啟明(2001), 空氣品質異常偶發事件之認定及評估,EPA-90-FA11-03-90D014,行政院環境保護署。
林能暉、劉振榮及倪簡白(2002), 高污染區域大氣邊界層密集觀測及對污染物擴散之研究,行政院環境保護署。
李崇德、宋鎮宇、王俊凱、張士昱及王證權(2001), 沙塵暴期間台北地區氣膠散光係數和物理化學特性,大陸沙塵暴對台灣地區空氣品質影響與預測研討會論文。
吳承翰(2002), 亞洲沙塵暴之模擬。國立中央大學大氣物理研究所碩士論文,中壢。
徐睿鴻(2007), 鹿林山與中壢氣膠光學垂直特性之監測與比較。國立中央大學大氣物理研究所碩士論文,中壢。
郭俊江(2006), 光達及太陽輻射儀之應用:2005 年中壢氣膠光學垂
直特性及邊界層高度之變化。國立中央大學大氣物理研究所碩士論文,中壢。
賈浩平(2008), 為脈衝光達及太陽輻射儀之應用:2005-2007年中壢
地區氣膠光學垂直特性分析。國立中央大學大氣物理研究所碩士論文,中壢。
Andreae, M. O., C. D. Jones, and P. M. Cox (2005), Strong present-day aerosol cooling implies a hot future, Nature, 435, 1,187-1,190.
Chou, M.D., P.H., Lin, P.L. Ma, and H.J. Lin (2006), Effects of aerosols on the surface solar radiation in a tropical urban area. J. Gerphys. Res, 111, D15207, doi:10.1029/2005JD006910.
Chan, L.Y., H. Y. Liu, K. S. Lam, T. Wang, S. J. Oltmans, J. M. Harris (1998), Analysis of the seasonal behavior of tropospheric ozone at Hong Kong. Atmos. Environ., 32, 159-168.
Chen, W.N., Y.W. Chen, Charles C.K. Chou, S.Y. Chang, P.H. Lin, and J.P. Chen (2009), Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan, Atmos. Environ., 43, 2,700-2,708.
Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science, 255, 423-430.
de Leeuw, G., F. Neele, M. Hill, M. Smith, and E. Vignati (2000),Production of sea-spray aerosol in the surf zone, J. Geophys.Res., 105, 29,397-29,409.
Du, W.P., J.Y. Xin, M.X. Wang, Q.X. Gao, Z.Q. Li, and Y.S. Wang (2008), Photometric measurements of spring aerosol optical properties in dust and non-dust periods in China, Atmos. Environ., 42, 7,981-7,987.
Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B. Chen, B. Chatenet, L. Gomes, X.-Y. Zhang, S.-C. Tsay, Q. Ji, D. Giles, and I. Slutsker (2005), Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Gerphys. Res., 110, D06202, doi: 10.1029 /2004JD005274.
Harrison, L., J. Michalsky and J. Berndt (1994), Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements, Applied Optics, 33, 5,118-5,125.
Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res., 102, D6, 6,831–6,864.
Hansen, J., T. Bond, B. Cairns, H. Gaeggler, B. Liepert, T. Novakov, and B. Schichtel (2004), Carbonaceous aerosols in the industrial era, EOS, Trans. AGU, 85, 241-244.
Haywood, J., D. Roberts, A. Slingo, J. Edwards, and K. Shine (1997),General circulation model calculations of the direct radiative forcing of tropospheric sulfate and fossil-fuel aerosol, J. Clim., 10, 1,562-1,577.
Haywood J. M., O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aserosol: a review. Reviews of Geophysics, 38, 513-543.
Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2007: Technical Summary, edited by F. Joos et al., Cambridge Univ. Press, New York.
Jacobson, M. Z. (2000), A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, Geophys. Res. Lett., 27, 217-220.
Jacobson, M. Z. (2004), The short-term cooling but long-term global warming due to biomass burning, J. Clim., 17, 2,909-2,926.
Kasten, F. (1966), A new table and approximate formula for relative optical air mass, Archives for Meteorology Geophysics and Bioclimatology, 14, 206-233.
Kasten, F., and A.T. Young (1989), Revised optical air mass tables and approximation formula, Applied Optics, 28, 4,735-4,738.
Krotkov, N., P.K. Bhartia, J. Herman, J. Slusser, G. Scott, G. Labow, A.P. Vasilkov, T.F. Eck, O. Dubovik, and B.N. Holben, (2005a), part 1: ultraviolet multifilter rotating shadowband radiometer calibration and intercomparison with CIMEL sunphotometers, Opt. Eng., 44, 4, 041004-1 - 041004-17
Kim, J.E., S.Y. Ryu, Z.H. He, and Y.J. Kim (2006), Spectral aerosol optical depth variation with different types of aerosol at Gwangju, Korea, Journal of Atmospheric and Solar-Terrestrial Physics,68, 1,609-1,621.
Lohmann, U., and M. Wild (2005), Solar Dimming, Global Change NewsLetter, 63, 21-22.
N. Prats, V.E. Cachorro, M. Sorribas, S. Mogo, A. Berjon, C. Toledano, A.M. de Frutos, J. de la Rosa, N. Laualinen, B.A. de la Morena (2008), Columnar aerosol optical properties during ‘‘El Arenosillo 2004 summer campaign’’, Atmos. Environ., 42, 2,643-2,653.
Ogunjobi, K. O., Z. He, K. W. Kim, and Y. J. Kim (2004), Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea, Atmos. Environ., 38, 1,313-1,323.
Peng, C. M. and N. H. Lin (2002), Long-range transport of Asian dust: An integrated modeling study. 6th International Aerosol Conference (IAC2002), 663-664.
Ramanathan, V., et al. (2001a), Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great into-Asian haze, J Geophys. Res., 106, D28, 28,371-28,398.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosefeld (2001b), Aerosol, Climate, and Hydrological Cycle. Since, 294, 2,119-2,124.
Reid, J. S., H. Jonsson, M. Smith, and A. Smirnov (2001), Evolution of the vertical profile and flux of large sea-salt particles in a coastal zone. J. Geophys. Res., 106, 12,039-12,053.
Russell, P. B., P. V. Hobbs, and L. L. Stowe (1999), Aerosol properties and radiative effects in the United States east coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX), J. Geophys. Res., 104, 2,289-2,307.
Smirnov A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Cloud-Screening and Quality Control Algorithms for the AERONET Database, Rem. Sens. Environ., 73, 337-349.
Sano, I., S. Mukai, Y. Okada, B. N. Holben, S. Ohta, and T. Takamura (2003), Optical properties of aerosols durning APEX and ACE-Asia experiments, J. Gerphys. Res., 108, D23, doi:10.1029/2002JD003263.
Twomey, S. (1974), Pollution and the planetary albedo, Atmos. Environ., 8, 1,251-1,256.
Vignati, E., G. de Leeuw, and R. Berkowicz (2001), Modeling coastalaerosol transport and effects of surf-produced aerosols on processes in the marine boundary layer, J. Geophys. Res., 106,20,225-20,238.
Wang, S. H., N. H. Lin, M. D. Chou, and J. H. Woo (2007), Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P, J. Geophys. Res., 112 , D10222 doi:10.1029/2006JD007564.
Wild, M. (2005a), Solar radiation budgets in atmospheric model intercomparisons from a surface perspective, Geophys. Res. Lett., 32, L07704, doi:10.1029/2005GL022421.
Wigley, T. M. L., and S. C. B. Raper (1990), Natural variability of the climate system and diction of the greenhouse effect, Nature, 344, 324-327.
Xuan, J., G.L. Liu, and K. Du (2000), Dust emission inventory in Northern China, Atmos. Environ., 34, 4,565–4,570.
Yu, H., R. E. Dickinson, M. Chin, Y. J. Kaufman, M. Zhou, L. Zhou, Y. Tian, O. Dubovik, and B. N. Holben (2004), Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations, J. Geophys. Res., 109, D03206, doi:10.1029/2003JD003914.
Zhang, X.Y., G.Y. Zhang, G.H. Zhu, D.E. Zhang, Z.S. An, T. Chen, and X.P. Huang (1996), Elemental tracers for Chinese source dust. Science in China, 26,512–521.
指導教授 林能暉(Neng-hui Lin) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明