博碩士論文 87247003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.135.219.226
姓名 褚芳達(Fang-Dar Chu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 低緯度電離層不規則體之GPS相位擾亂長期觀測
(A long term observation of ionospheric irregularities at low latitudes by using GPS phase fluctuations)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電離層的電子密度不規則體會影響電磁波的傳播,赤道地區夜間電子密度不規則體所引起的散狀F層現象之發生機率的全球分布一直是重要的研究主題。由過去多種觀測技術 (radar power map / scintillation, ionosonde spread-F, satellite measurement / scintillation, and optical imager) 可推論出赤道散狀F層 (ESF) 的發生率有明顯的經度效應;但那些觀測系統彼此之間的差異性大,各有其限制且判斷有不規則體存在的criteria也各不相同,觀測結果只能做定性比較;而且那些觀測資料通常也不夠長或不夠密集而無法顯現整個太陽週期之ESF發生率的變化。
本研究有兩個目的,一個目的是發展一種新觀測技術,只使用全球定位系統 (GPS) 就能在全球各地進行全天候長期觀測,且以相同的分析方法與criteria來判斷不規則體是否發生;另一個目的是探索全球低緯度各經度區的ESF發生率,以及提供整個太陽活動週期的ESF發生率逐年演進細節。研究方法首先是研發以傾斜全電子含量計算GPS相位擾亂的analysis approach,由於不需要儀器偏差值,所以可以直接應用到所有GPS觀測資料;然後以GPS相位擾亂偵測全球低緯度地區的ESF,統計其發生機率並比較各經度區的差異。
研究結果顯示,(1) 赤道散狀F層的occurrence pattern有非常顯著的經度效應;太平洋的Kwajalein、Guam、菲律賓,以及非洲地區是equinox and June solstice months 發生率高,但南美洲的巴西、祕魯、以及印度卻是equinox and December solstice months 發生率高。(2) 在太陽活動相關性方面,強烈不規則體發生率與太陽活動呈正相關;而普通不規則體發生率通常也與太陽活動呈正相關,只有兩個例外是巴西的December solstice months與太陽活動無關,以及祕魯的equinox months 與太陽活動無關或僅呈弱相關。(3) 至於ESF發生率之逐年演進則發現不規則體發生率在那個季節月份最大是取決於當地 equinox months 與 June or December solstice months 發生率的拉鋸競爭,在不同太陽活動階段常會有不同結果,只有兩個例外是巴西 (始終都是December solstice maximum) 與菲律賓 (始終都是equinoctial maxima)。
本研究發展完成的GPS相位擾亂analysis approach可實現只用一種觀測系統與分析方法就能進行全球全天候長期觀測的目的,讓GPS成為觀測電離層不規則體的有用工具。而且本研究為首次嘗試分析全球低緯度地區長期大量GPS觀測資料且已獲得豐富結果,能描繪較完整可靠的全球ESF發生率分佈情況。
摘要(英) The electron density irregularities in the ionosphere would affect the propagation of electromagnetic wave. The spreading F layer phenomena which caused by electron density irregularities at low latitudes is an important research topic. It could have been deduced that the distribution of occurrence rates of equatorial spread F (ESF) shows obvious longitude effect by using many observation techniques (radar power map / scintillation, ionosonde spread-F, satellite measurement / scintillation, and optical imager) in the past. Nevertheless, those techniques are not only very different each other, but also with their individual limits and with different criteria to detect the existence of ionospheric irregularities. The results obtained by those techniques would only be made qualitative comparisons. Besides, those observation data are usually not sufficient long or not continuous to show the year by year variation of ESF occurrence rate during an entire solar cycle period.
There are two objectives in this paper. One objective is to develop a new observation technique that can conduct a global, all weather, and long-term observation of the ionosphere by using the global position system (GPS), and moreover, can detect the existence of ionospheric irregularities with the same analysis procedure and criterion. The other objective is to investigate the distribution of ESF occurrence rates at low latitudes, and moreover, investigate the details of year by year evolution of ESF occurrence rates during an entire solar cycle period. The method was as the following. First, a new analysis approach of GPS phase fluctuation was developed by using slant total electron contents, rather than vertical total electron contents. The new analysis approach needed no instrumental biases, and therefore it could be directly applied to every GPS observation data set. The last, the new GPS phase fluctuation approach was applied to detect the ESF occurrence at global low latitudes, and moreover, the statistics of ESF occurrence were calculated and the comparisons of the occurrence rates between different longitudes were made.
There were three important results. (1) The occurrence distribution of equatorial spread F did show obvious longitude effect. The occurrence rates peak at equinox and June solstice months in the Pacific sector (Kwajalein, Guam and Philippines) and Africa, nevertheless, the occurrence rates peak at equinox and December solstice months in South America sector (Brazil and Peru) and India. (2) Strong ionospheric irregularities are always positive dependent on solar activity; and similarly, moderate irregularities are usually positive dependent on solar activity, excepting that those in Brazil are independent in December solstice months, and those in Peru are independent or only weak dependent in equinox months. (3) As to the evolution of occurrence rates of irregularities with solar activity, it should be noted that irregularity occurrence rates peak in which season (month) are determined by the competition between the occurrence rates in equinox months and June or December solstice months, and therefore, would be different results in different phase of solar activity, excepting for Brazil (always December solstice maximum) and Philippines (always equinoctial maxima).
The GPS phase fluctuation analysis approach developed in this study does satisfy the objective to investigate the global ionosphere with the GPS system with all weather and long term observations. This study is the first attempt to analyze long term GPS observation data for the research of equatorial spread F layer. Many interesting results have been obtained, and a more complete and reliable longitude effect on equatorial spread F layer could be portrayed.
關鍵字(中) ★ 電離層不規則體
★ 赤道區電離層
關鍵字(英) ★ ionospheric irregularities
★ equatorial ionosphere
論文目次 第一章 前言...............................................1
1.1 電離層的結構與變化....................................1
1.2 電離層電子密度不規則體................................5
1.3 GPS系統..............................................12
1.4 本研究概述...........................................18
第二章 電離層GPS相位擾亂觀測.............................21
2.1 GPS觀測電離層全電子含量..............................21
2.2 GPS相位擾亂的先前學者研究............................30
2.3 本研究的相位擾亂程式研發.............................38
2.4 相位擾亂分析方法之改進...............................44
第三章 低緯度不規則體之長期觀測結果......................53
3.1 巴西經度區...........................................53
3.2 祕魯經度區...........................................65
3.3 太平洋經度區.........................................82
3.4 台灣-菲律賓經度區....................................95
3.5 印度洋經度區........................................113
第四章 討論.............................................127
4.1 觀測結果探討........................................127
4.2 赤道散狀F層相關理論.................................138
第五章 結論.............................................144
參考文獻................................................149
參考文獻 Aarons, J. (1993), The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63, 209-243.
Abdu, M. A., J. H. A. Sobral, O. R. Nelson, and I. S. Batista [1985], Solar cycle related range type spread-F occurrence characteristics over equatorial and low latitude station in Brazil, J. Atmos. Terr. Phys., 47, 901-905.
Anderson, D. N., B. Reinisch, C. E. Valladares, J. Chau, O. Veliz (2004), Forecasting the occurrence of ionospheric scintillation activity in the equatorial ionosphere on day-to-day basis, J. Atmos. Solar Terr. Phys., 66, 1567-1572.
Basu, S., J. Aarons, J. P. McClure, C. La Hoz, A. Bushby, and R. F. Woodman (1977), Preliminary comparisons of VHF radar maps of F-region irregularities with scintillations in the equatorial region., J. Atmos. Terr. Phys., 39, 1251-1261.
Booker, H. G., and H. W. Wells (1938), Scattering of radio waves by the F region ionosphere, J. Geophy. Res., 43, 249-256.
Budden KG (1985), The propagation of radio waves, Cambridge University Press, Cambridge.
Chu, F. D., J. Y. Liu, H. Takahashi, J. H. A. Sobral, M. J. Taylor, and A. F. Medeiros [2005], The climatology of ionospheric plasma bubbles and irregularities over Brazil, Ann. Geophys., 23, 379-384.
Dabas, R. S., R. M. Das, K. Sharma, S. C. Garg, C. V. Devasia, K.S.V. Subbarao, K. Niranjan, P.V.S. R. Rao (2007), Equatorial and low latitude spread-F irregularity characteristics over the Indian region and their prediction possibilities, J. Atmos. Solar Terr. Phys., 69, 685-696.
Davies, K. (1990), Ionospheric Radio, Peter Peregrinus Ltd, London, UK.
Dong, D., and Y. Bock (1989), Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California, J. Geophy. Res., 94, 3949-3966.
Farley, D. T., B. B. Balsley, R. F. Woodman, and J. P. McClure (1970), Equatorial spread F: Implications of VHF radar observations, J. Geophy. Res., 75, 7199-7216.
Fejer, B. G., L. Scherliess, and E. R. de Paula (1999), Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19859-19869.
Frei, E., and G. Beutler (1990), Rapid static positioning based on the fast ambiguity resolution approach ‘FARA’: Theory and first results, Manuscripta Geodaetica, 15, 325-356.
Gustafsson, G.., N. E. Papitashvili and V. O. Papitashvili (1992), A Revised Corrected Geomagnetic Coordinate System for Epochs 1985 and 1990, J. Atmos. Terr. Phys., 54, 1609-1631.
Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (1997), Global positioning system, theory and practice, 4th rev. ed., Springer Wien New York, Austria.
Jackson WD (1975), Classical Electrodynamics, John Wiley & Sons, New York. pp. 301.
Jiang, Z. and G. Petit (2004), “Time transfer with GPS satellites all in view,” in Proc. ATF2004, Beijing, China, Oct. 2004, pp. 236-243.
Kelley, M. C., and R. A. Heelis (1989), The Earth’s Ionosphere, Plasma Physics and Electrodynamics, Academic Press, Inc., San Diego, California, USA.
Kelley, M. C., G. Haerendel, H. Kappler, A. Valenzuela, B. B. Balsley, D. A. Carter, W. L. Ecklund, C. W. Carlson, B. Häusler, and R. Torbert (1976), Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F, Geophys. Res. Lett., 3, 448-450.
Larson, K. M. and J. Levine (1999), Carrier-Phase Time Transfer. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 46(4), 1001-1012.
Leick, Alfred (1995), GPS Satellite Surveying, Second Edition, John Wiley & Sons, New York.
Leick, Alfred (2004), GPS Satellite Surveying, Third Edition, John Wiley & Sons, New York.
Lyon, A. J., N. J. Skinner, and R. W. Wright (1961), Equatorial spread-F at Ibadan, Nigeria, J. Atmos. Terr. Phys., 21, 100-119.
Maruyama, T., and N. Matuura (1984), Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res., 89, 10,903-10,912.
McClure, J. P., W. B. Hanson, and J. H. Hoffman (1977), Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophy. Res., 82, 2650.
Mendillo, M., B. Lin, and J. Aarons (2000), The application of GPS observations to equatorial aeronomy, Radio Sci., 35, 885-904.
Nichols, B. E. (1974), UHF fading from a synchronous satellite observed at Kwajalein October 1970 through June 1972, Tech. Note 1974-19 Lincoln Laboratory, Bedford Ma.
Osborne, B. W. (1951), Ionospheric behaviour in the F2 region at Singapore, J. Atmos. Terr. Phys., 2, 66-78.
Papas CH (1965), Theory of Electromagnetic Wave Propagation, McGraw-Hill, New York.
Park, C., I. Kim, J. G. Lee, and G.-I. Jee (1997), Efficient technique to fix GPS carrier phase integer ambiguity on-the-fly, IEEE Proc.-Radar, Sonar Navig., 144, 148-155.
Paulson, M. R (1980), Equatorial scintillation of satellite signals at UHF and L-Band for two different elevation angles, Naval Ocean System Command San Diego, CA. TR 543.
Paulson, M. R. (1981), Scintillation of VHF/UHF and L band satellite signals at Guam, Radio Sci., 16, 877-884.
Pi, X., A. J. Mannucci, U. J. Lindqwister, and C. M. Ho (1997), Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 24, 2283-2286.
Remondi, B. W. (1984), Using the Global Positioning System (GPS) Phase Observable for Relative Geodesy: Modeling, Processing, and Results. NOAA, reprint of doctoral dissertation. Center for Space Research, University of Texas at Austin.
Remondi, B. W. (1985), Performing Centimeter-level Surveys in Seconds with GPS Carrier Phase: Initial Results. Navigation, 32(4): 386-400.
Rich, F. J. and S. Basu (1985), “Ionospheric Physics” In: Handbook of Geophysics and the Space Environment, Ed. Jursa, A. S., Air Force Geophysics Labortory, Bedford, Mass.
Sahai, Y., P. R. Fagundes, J. A. Bittencourt (1999), Solar Cycle Effects on Large Scale Equatorial F-Region Plasma Depletions, Adv. Space Res., 24, 1477-1480.
Sardon E., A. Rius, and N. Zarraoa (1994), Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from GPS observations, Radio Sci., 29(3), 577-586.
Sardon, E. and N. Zarraoa (1997), Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases? Radio Sci., 32(5), 1899-1910.
Schunk, R. W., and A. F. Nagy (2000), Ionosphere: Physics, Plasma Physics, and Chemistry, Cambridge University Press, Cambridge, UK.
Sobral, J. H. A., Abdu, M. A., Takahashi, H., Taylor, M. J., de Paula, E. R., Zamlutti, C. J., de Aquion M. G., and Borba, G.L. (2002), Ionospheric plasma bubble climatology over Brazil based on 22 years (1977-1998) of 630 nm airglow observations, J. Atmo. Solar Terr. Phys., 64, 1517-1524.
Sovers, O. J., and J. L. Fanselow (1987), Observation model and parameter partials for the JPL VLBI parameter estimation software MASTERFIT-1987, Jet Propusion Lab Publ. 83-39, 3, 1-60.
Su, S.-Y., C. H. Liu, H. H. Ho, and C. K. Chao (2006), Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res., 111, A06305, doi:10.1029/2005JA011330.
Sultan, P. J. (1996), Linear theory and modeling of the Rayleigth-Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 101(A12), 26875-26891.
Tsunoda, R. T. (1985), Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res., 90, 447-456.
Van Sickle, Jan (2001), GPS for Land Surveyors, Second Edition, Ann Arbor Press, Chelsea, Michigan.
Wanninger, L. (1993), Ionospheric monitoring using IGS data, paper presented at the IGS Workshop, Inst. of Geol. Sci., Bern, Switzerland.
Weber, E. J., J. Buchau, R. H. Eather, and S. B. Mende (1978), North-south aligned equatorial airglow depletions, J. Geophy. Res., 93, 712-716.
Whalen, J. A. (1998), Appleton anomaly increase following sunset: Its observed relation to equatorial F layer E x B drift velocity, J. Geophys. Res., 103, 9497-9504.
Whalen, J. A. (2000), An equatorial bubble: Its evolution observed in relation to bottomside spread F and to the Appleton anomaly, J. Geophys. Res., 105(A3), 5303-5316.
Whalen, J. A. (2001), The equatorial anomaly: Its quantitative relation to equatorial bubbles, bottomside spread F, and E x B drift velocity during a month at solar maximum, J. Geophys. Res., 106(A12), 29125-29132.
Whalen, J. A. (2002), Dependence of equatorial bubbles and bottomside spread F on season, magnetic activity, and E x B drift velocity during solar maximum, J. Geophys. Res., 107(A2), 1024, doi:10.1029/2001JA000039.
Whalen, J. A. (2003), Dependence of the equatorial anomaly and of equatorial spread F on the maximum prereversal E x B drift velocity measured at solar maximum, J. Geophys. Res., 108(A5), 1193, doi:10.1029/2002JA009755.
Weber, E. J., S. Basu, T. W. Bullett, C. Valladares, G. Bishop, K. Groves, H. Kuenzler, P. Ning, P. J. Sultan, R. E. Sheehan, and J. Araya (1996), Equatorial plasma depletion precursor signatures and onset observed at 11° south of the magnetic equator, J. Geophys. Res., 101, 26,829-26,838.
Woodman, R. F., and C. La Hoz (1976), Radar observations of F region equatorial irregularities, J. Geophy. Res., 81, 5447-5466.
Wright, R. W., J. R. Koster, and N. J. Skinner (1956), Spread F-layer echoes and radio-star scintillation, J. Atmos. Terr. Phys., 8, 240-246.
Zalesak, S. T., and S. L. Ossakow (1980), Nonlinear equatorial spread F: Spatially large bubbles resulting from large horizontal scale initial perturbations, J. Geophys. Res., 85, 2131.
網路資源
CODE, Center for Orbit Determination in Europe, data download web site http://www.aiub-download.unibe.ch/CODE/
GARMIN Ltd. (2000), GPS guide for beginners, at http://www8.garmin.com/manuals/GPSGuideforBeginners_Manual.pdf
IGRF/DGRF Model Parameters and Corrected Geomagnetic Coordinates website http://nssdc.gsfc.nasa.gov/space/cgm
IGS, The International GNSS Service website http://igscb.jpl.nasa.gov
The Aerospace Corporation. (2003), GPS primer, A student guide to the Global Positioning System, at http://www.aero.org/education/primers/gps/GPS-Primer.pdf
羅清岳 (2006),智慧型GPS導航天線設計及市場應用,2007年4月12日,at http://tech.digitimes.com.tw/ShowNews.aspx?zCatId=12C&zNotesDocId=13328ABB32FF99D4482571B800616EFD
指導教授 劉正彥(J. Y. Liu) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明