摘要(英) |
The Danshuei River system is the largest estuarine system in Taiwan. It consists of three major tributaries: Tahan Stream, Hsintien Stream and Keelung River. The estuary is the primary conduit for the transport of water and material from its drainage basin to the coastal ocean. The ultimate fates of land-derived materials, such as pollutants, depend on the water movement in the estuaries. To predict the fate and transport of materials from land to the ocean requires the knowledge of water movement through this stretch of water body. The heavy metal in the rivers and estuaries mainly includes dissolved and particulated phases .The latter is the heavy metal absorbed on the suspended sediment. In general, the distribution coefficient determines the amount of dissolved and sorbed fractions.
In order to understand the physical transport characteristics of heavy metal transports in rivers and estuaries, a vertical (laterally averaged) two-dimensional heavy metal transport model was developed and based on hydrodynamics, salt, and sediment transport models. The model was applied to the Danshuei River estuarine system which is the largest tidal river in Taiwan and to simulate the copper transport including total, dissolved, and sorbed copper concentrations. The upstream boundaries of the computational domain are: Cheng-Ling Bridge (Tahan Stream), Hsiu-Lang Bridge (Hsintien Stream), Wu-Du (Keelung River). The downstream is at the Danshuei River mouth. The comparisons of field measurement and computed tidal elevation, velocity, salinity, suspend sediment concentration show that they are in good agreement. In order to validate the accuracy of the Heavy metal transport model, two field measurements conducted by the National Center for Ocean Research (NCOR) during 2001 to 2002, were adopted for comparison with simulation results. According to pictures from pollutant area and measured data conducted by the Environmental Protection Administration and National Center for Ocean Research, the high copper concentration exhibits near the Hsin-Hai Bridge. The simulated results reveal that point source loading (250 kg/day) should be added near the Hsin-Hai Bridge to match the field data.
After the model calibration and verification, the heavy metal transport model was applied to investigate the impacts on copper distribution in the water column under different conditions of sediment bed fluxes. The model was also used to comprehend the tidally averaged salinity distributions, residual current, suspended sediment concentration, copper concentration and fluxes. |
參考文獻 |
(1) 許時雄,「淡水河下游感潮變量流之研究」, 水利復刊第七期,(1969)。
(2) 歐陽嶠暉,「淡水河水系水污染調查及河川自淨能力之研究」,台灣水利,第19卷3期,(1971)。
(3) 顏清連、許銘熙,「河川體系變量流之數值模擬」,台大土木工程學研究報告,水利7105(1982)。
(4) 經濟部水資會,「淡水河流域河川水質數學模式之研究」,(1983)。
(5) 顏清連、王如意、朱紹鎔、許銘熙、呂建華、張守陽,「基隆河水理特性之研究」,水利7203,國立台灣大學土木工程學研究所,(1984)。
(6) 陳樹群,「河川動態水質數學模式之建立與應用」,碩士論文,國立台灣大學土木工程學研究所,(1984)。
(7) 連上堯,「枯水期基隆河水理與水質模式之研究」,碩士論文,國立台灣大學農業工程學研究所,(1988)。
(8) 洪政豐,「潮流對河川污染質影響之研究」,碩士論文,國立成功大學水利及海洋工程研究所,(1988)。
(9) 許銘熙、張尊國、柳文成、連上堯,「基隆河水理暨水質特性之研究(一)截流系統對河川水理之影響」,行政院國科會專題研究計畫報告,(1989)。
(10) 張瑞津、石再添,「淡水河下游感潮的研究」,地理學研究第13期,(1989)。
(11) 陳筱華,「河川污染特性及水質數學模式之探討─以基隆河為例」,碩士論文,國立台灣大學環境工程學研究所,(1989)。
(12) 許銘熙、張尊國、柳文成、連上堯,「基隆河水理暨水質特性之研究(二)截流系統對河川水質之影響」,行政院國科會專題研究計畫報告,(1990)。
(13) 柳文成,「截流系統對基隆河水質影響之研究」,碩士論文,國立台灣大學農業工程學研究所,(1990)。
(14) 闕蓓德,「重金屬離子於地下水層之傳輸研究」,碩士論文,國立台灣大學環境工程學研究所,(1991)。
(15) 王順明,「基隆水質監測站網之優選與模擬」,碩士論文,國立台灣大學環境工程學研究所,(1992)。
(16) 陳建維,「基隆河截彎取直對鹽分分佈影響之模擬」,碩士論文,國立台灣大學環境工程學研究所,(1994)。
(17) 李鴻源,「淡水河感潮特性之探討(二)」,國立台灣大學水工試驗所,(1995)。
(18) 許銘熙、郭振泰、郭義雄、柳文成,「淡水河系潮流、河口環流與鹽分佈之研究(一)、(二)」,國立臺灣大學水工試驗所研究報告239及273號,(1996, 1997)。
(19) 柳文成、許銘熙、郭義雄、郭振泰,「淡水河河口環流特性之研究」,台灣水利,第46卷第一期,pp. 33-42,(1998)。
(20) 許銘熙、郭義雄、郭振泰、柳文成,「淡水河感潮段垂直二維水理與水質動態傳輸模式(一)、(二)」,行政院國科會專題計畫研究成果報告,(1998, 1999)。
(21) 柳文成、許銘熙、郭義雄、郭振泰,「密度變化對河口環流、鹽分分佈與水質之影響」,中華民國農業工程學報,第45卷第一期,pp. 1-11,(1999)。
(22) 劉景毅,「二維與三維水理數值模式在淡水河海域之應用與比較」,中國土木水利工程學刊,第11卷,第三期,pp. 579-587,(1999)。
(23) 黃國銘,「淡水河系懸浮顆粒與沉積物眾金屬之時空及沉降變化之研究」,博士論文,國立台灣大學海洋研究所,(2004)。
(24) 王琪芳,「淡水河系感潮段水質與生態系統模擬研究」,博士論文,國立台灣大學生物環境系統工程學研究所,(2005)。
(25) 行政院環保署-環境水質監測網站(http://www.epa.gov.tw)。
(26) 行政院環保署環境檢驗所-水質檢測方法(http://www.niea.gov.tw/)。
(27) Bale, A. J. 1987. The characteristics, behaviour and heterogeneous reactivity of estuarine suspended particles. PhD Thesis, Plymouth Polytechnic, 216 pp.
(28) Chen, W. C., Leva, D. and Olivieri, A., 1996. Modeling the fate of copper discharged to San Francisco Bay. Journal of Environmental Engineering 122(10), 924-934.
(29) Environmental and Hydraulic Laboratories. 1986. CE-QUAL-W2: A numerical two-dimensional, lateral averaged model of hydrodynamics and water quality; user’s manual. Instruction Report E-86-5, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
(30) Hwang, B. G., Jun, K. S., Lee, Y. D. and Lung, W, S., 1998. Importance of DOC in sediments fro contaminant transport modeling. Water Science and Technology 38, 193-199.
(31) Hsu, M. H., Kuo, A. Y., Kuo, J. T. and Liu, W. C., 1999. Procedure to calibrate and verify numerical models of estuarine hydrodynamics. Journal of Hydraulic Engineering, ASCE 125(2), 166-182.
(32) Huang, K. M. and Lin, S., 2003. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere 53, 1113-1121.
(33) Jiann, K. T., Wen, L. S. and Santschi, P. H., 2005 Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Marine Chemistry 96, 293-313.
(34) Li, Y. H., Burkhardt, L. and Teraoka, H. 1984. Desorption and coagulation of trace elements during estuarine mixing. Estuarine Coastal and Shelf Sciences 12, 629-643.
(35) Liu, W. C., Hsu, M. H., and Kuo, A. Y., 2002. Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan. Marine Pollution Bulletin 44, 1076-1088.
(36) Mwanuzi, F. and Smedt, F. D., 1999. Heavy metal distribution model under estuarine mixing. Hydrological Processes 13, 789-804.
(37) Novotny, V. 1995. Diffuse sources of pollution by toxic metals and impact in receiving water. In: Salomons, W., Forrstner, U. and Mader, P. (eds.), Heavy metals. Springer, London, 33-52.
(38) Park, K. and Kuo, A. Y. 1993. A vertical-dimensional model of estuarine hydrodynamics and water quality. Special Report in Applied Marine Science and Ocean Engineering, No. 321, Virginia Institute of Marine Science, Gloucester Pt., VA. 47 pp.
(39) Turner, A., Millward, G. E., Schuchardt, B., Schirmer, M. and Prange, A. 1992. Trace metal distribution coefficients in the Wester Estuary. Continental Shelf Research 12, 1277-1292.
(40) Turner A. and Millward G. E., 1994. Partitioning of trace metals in a macrotidal estuary. Implications for contaminant transport models. Estuarine Coastal and Shelf Sciences 39, 45-58.
(41) Wu, Y., Falconer, R. A. and Lin B., 2001. Hydro-environmental modeling of heavy metal fluxes in an estuary. In: Proceedings of XXIX IAHR Congress, Theme B: Environmental Hydraulics, 732-739.
(42) Wu, Y., Falconer, R. A. and Lin B., 2005. Modelling trace metal concentration distributions in estuarine waters. Estuarine, Coastal and Shelf Science 64, 669-709. |