博碩士論文 956205006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.138.120.112
姓名 丁錡樺(Chi-hua Ting)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 呂宋海峽內潮及其強化生地化通量之數值研究
(Numerical study of internal tides in the Luzon Strait and its influence on biogeochemical fluxes)
相關論文
★ 翡翠水庫之水文特性及水理水質之模式研究★ 翡翠水庫及其集水區之氫氧碳同位素 水文學研究
★ 淡水河口環流與淡水舌之研究★ 南灣內夏季1-4週溫降與回升現象原因之探討
★ 烏坵海域夏季海流垂直結構受潮汐及風場影響之研究★ 以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物
★ 淡水河重金屬傳輸模式之發展★ 淡水河流域鹼度、酸鹼值與主要離子 之時空變化
★ 水體中顆粒與沈積物之有機碳、氮及其穩定同位素研究:南海及翠峰湖★ 淡水河口水舌擺盪動力機制之研究
★ 翡翠水庫之沉降顆粒及沉積物中 多環芳香族碳氫化合物(PAHs)之研究★ 南海時間序列測站(SEATS)碳循環之探討:一維物理-生地化耦合模式之應用
★ 淡水河口之顆粒性有機碳、氮同位素及溶解性無機氮同位素之研究★ 利用SPOT衛星影像探討蘭陽溪口淡水舌之時空變化
★ 潮汐作用對東海生地化循環及初級生產力之影響★ 淡水河流域溶解性有機碳通量之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 南海是一個半封閉的海域,由水深達5000-6000 m的中央海盆及水深淺於200 m的廣大陸棚區所組成。根據「亞洲聲學實驗」(ASIAEX) 2001年在南海的調查,發現南海北部有相當顯著的內潮(斜壓潮)活動。而呂宋海峽是連接南海與太平洋的主要通道,內部有呂宋島弧與恆春海脊兩座海檻地形,當正壓潮流流經此處會因為與海脊的交互作用激發強烈的斜壓潮波。本研究進一步利用三維潮汐模式耦合生地化模式去研究激發自呂宋海峽之內潮的特性與能量以及對南海生地化參數的影響。模式初始場則採用南海時間序列站(SEATS)自1999至2003年間的溫鹽深歷史資料所分析得到的季節性溫、鹽剖面。
數值實驗結果顯示季節性的水文結構差異並未造成斜壓潮能量有重要的改變,但是斜壓潮能量在大小潮間的變異則相當明顯,而全、半日斜壓潮的能量也有明顯的差異。估算正壓能量轉換成斜壓能量的百分率,半日斜壓潮約20%,全日斜壓潮30%,而混合型斜壓潮在大小潮期間分別為30%與23%。另外,研究結果尚指出冬夏兩季的斜壓潮能量雖然沒有重要的差異,但是夏季斜壓潮的水平相速度及水平群速度皆比冬季來的快。
生地化方面的模擬結果則顯現內潮遇上類似東沙島這類陡變的地形會有比較強的混合作用進而將深海的營養鹽向上傳輸至有光層中並提升生產力。模式結果指出內潮引起的營養鹽傳輸可支持整個南海初級生產力(410 mgC/m2-day)的3.5-6.6%。
摘要(英) The South China Sea (SCS) is a semienclosed basin with depth of 5000-6000 m in the central basin and less than 200 m over most of peripheral shelves. Observations obtained in the Asian Seas International Acoustics Experiment (ASIAEX) 2001 revealed vigorous internal tides in the northern SCS. The Luzon Strait is primary deep passage connecting South China Sea (SCS) to the northwest Pacific Ocean and blocked by two meridional ridges at depths. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two meridional ridges, and generate vigorous internal tides. A three-dimensional tide model coupled with a biogeochemical model is used to study the characteristics and energetic of internal tides excited in the Luzon Strait and their influence on the biogeochemical parameters in SCS. Historical CTD data (1999-2003) collected at the South East Asia Time-Serious (SEATS) station are analyzed to obtain the seasonal profiles of temperature and salinity as the initial fields of the model.
Results derives from numerical experiments indicate that diurnal (O1 , K1) and semidiurnal (M2 , S2) tides have a comparable energy flux emanating from the Luzon Strait. The barotropic to baroclinic energy concersion rate reaches 30% for diurnal tides and 20% for semidiurnal tides. There appears no significant seasonal variation of the baroclinic tidal energy flux. Sprin-neap variations are strong. Nearly 30% and 23% of barotropic energy are transferred to baroclinic tides during spring and neap tide. Although there is no significant seasonal variation of energetics, the horizontal phase speed and group speed of baroclnic tide is faster in summer than in winter.
In the SCS, the interaction of internal tide with abruptly changed topography like the Dongsha Plateau may enhance mixing and bring nutrients to sunlit upper layers of the ocean, fueling biological growth. The model results show that the nutrient transport induced by internal tide could support 3.5-6.6% of the daily primary productivity which is 410mgC/m2-day in the SCS.
關鍵字(中) ★ 初級生產力
★ 數值模式
★ 內潮
關鍵字(英) ★ primary productivity
★ numerical model
★ internal tide
論文目次 中文摘要 I
英文摘要 II
致謝 IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 序論 1
1-1 前言 1
1-1-1 內波介紹 1
1-1-2 南海海域之地理水文氣候 3
1-1-3 海洋生地化 5
1-2 文獻回顧 7
1-3 研究目的與動機 11
第二章 南海北部水文剖面分析 13
2-1 資料來源 13
2-1-1 南海時間序列研究背景 13
2-1-2 資料處理 14
2-2 南海季節性躍層 17
2-2-1 躍層選取方法 17
2-2-1-1 濾波方法 18
2-2-2 南海躍層基本性質 22
2-2-3 南海躍層的季節性探討 23
2-3 浮力頻率的垂直結構 26
第三章 數值模式 28
3-1 數值模式簡介 28
3-2 模式基本描述 29
3-2-1 基本控制方程式 29
3-2-2 紊流閉合模式 31
3-2-3 σ座標轉換 34
3-2-4 網格配置 36
3-2-5 垂向邊界條件 37
3-2-6 模式結構 38
3-2-7 模式穩定條件模式穩定條件 41
3-3 三維潮汐模式之建構 42
3-3-1 模式地形 42
3-3-2 模式驅動 44
3-3-3 側邊界條件及相關設定 45
3-4 生地化模式 46
3-4-1 NPZD生地化模式描述 46
3-4-2 物理與生地化模式之耦合 52
第四章 數值實驗結果及討論 53
4-1 模式校驗 53
4-1-1 等潮位圖 53
4-1-2 潮流橢圓 55
4-2 數值實驗設計 57
4-3 內潮物理部分模擬結果 59
4-3-1 全日(O1+K1)、半日(M2+S2)斜壓潮之季節性探討-實驗
I、II 59
4-3-1-1 一般特性 60
4-3-1-2 能量 73
4-3-2 混合(O1+K1+M2+S2)斜壓潮之季節與大小潮的能量差異-
實驗III 81
4-4 內潮生地化部分模擬結果 87
4-4-1 南海表層海水葉綠素的分佈 87
4-4-2 內潮對生地化的影響 91
4-4-2-1 內潮在淺海與深海造成的生地化反應之比較 92
4-4-2-2 內潮對南海初級生產力的貢獻 94
第五章 結論與建議 97
中文參考文獻 100
英文參考文獻 101
附錄A 日循環光照 108
附錄B 生地化模式初始場 111
參考文獻 中文參考文獻:
王麗文,「南海時間序列站之生地化年間變化研究:利用一維海洋生地化模式之探討」,國立中央大學,博士論文,民國96年。
吳瑞中,「潮汐引致呂宋海峽內波之數值研究」,國立中山大學,碩士論文,民國96年。
侍茂崇,物理海洋學,一版,山東教育出版社,2004
殷建平、王友紹、徐繼榮、孫翠慈和張鳳琴,「大亞灣溫躍層形成及其對有關環境要素的影響」,海洋通報,第25卷,第4期,2006年8月。
陳希、沙文鈺和李妍,「南海北部海區溫躍層分佈特徵及成因的初步分析」,海洋預報,第18卷,第4期,2001年11月。
海洋資料庫簡訊第二號,1998,海洋科學研究中心。
葛人峰、喬方利、于非、蔣志曉和郭景松,「陸架海域溫躍層特徵量的一種計算方法-擬階梯函數逼近法」,海洋科學進展學刊,第21卷,第4期,2003年10月。
許明光、劉安國和李周衡,「利用SAR影像研究蘇祿海的內波」,航測及遙測學刊,第8卷,第3期,2003年9月。
程志強,「南海-海氣交換的熱通量」,熱帶海洋學刊,第15卷,第2期,1996年5月。
詹森、王玉懷和邱朝聰,「台灣海峽短期預報系統之發展」,2001海洋數值研討會,台北市,民國90年5月。
英文參考文獻:
Baines, P. G., (1982), “On internal tide generation models”, Deep-Sea Research, 29(3A), 307-338.
Bannister, T. T., (1974), “Production equations in terms of chlorophyll concentration, quantum yield, and upper limit to production”, Limnology and Oceanography, 9, 1-12.
Beardsley, R. C., T. F. Duda, J. F. Lynch, J. D. Irish, S. R. Ramp, C.-S. Chiu, T.-Y. Tang, Y.-J. Yang and G. Fang (2004) “Barotropic Tide in the Northeast South China Sea”, IEEE J. Oceanic Eng., 29(4), pp. 1075-1086.
Blumberg, A. F. and G. F. Mellor (1987), “A description of a three dimensional coastal ocean circulation model”, in Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Sciences, Vol. 4, pp. 1-16, AGU.
Brickman, D. and J. W. Loder (1993), “Energetics of the Internal Tide on Northern Georges Bank”, Journal of Physical Oceanography, Vol. 23, pp. 409-424.
Bruno, M., A. Vazquez, J. Gomez-Enri, J. M. Vargas, J. G. Lafuente, A. Ruiz-Canavate, L. Mariscal and J. Vidal (2006), “Obervations of internal waves and mixing phenomena in the portimao canyon area”, Deep-Sea Research Part II, Vol. 53, pp. 1219-1240.
Cai, S., X. Long and Z. Gan (2002), “A numerical study of the generation and propagation of internal solitary waves in the Luzon Strait”, Oceanologica Acta, Vol. 25, pp. 51-60.
Centurioni, L. R., P. P. Niller, and D.-K. Lee (2004), “Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait”, J. Phys. Oceanogr., 34, 113-121.
Chao, S.-Y., D.-S. Ko, R.-C. Lien amd P.-T. Shaw (2007), “Assessing the West Ridge of Luzon Strait as an internal Wave Mediator”, Journal of Oceanography, Vol. 63, pp. 897-911.
Colosi, J. A., R. C. Beardsley, J. F. Lynch, G. Gawarkiewicz, C.-S. Chiu and A. Scotti (2001), “Observation of nonlinear internal waves on the outer New England continental shelf during the summer Shelfbreak Primer study”, Journal of Geophysical Research, 106(C5), pp. 9587-9601.
Cummins, P. F., J. Y. Cherniawsky and M. G. Foreman (2001), “North Pacific internal tides from the Aleutian Ridge: Altimeter observations and modeling”, Journal of Marine Research, 59(2), pp. 167-191.
Doney, S. C., D. M. Glover and R. G. Najjar (1996), “A new couple, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site”, Deep-Sea Research II, 43(2-3), pp. 591-624.
Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C.-S. Chiu, T.-Y. Tang and Y.-J. Yang (2004), “Internal Tide and Nonlinear Internal Wave Behavior at the Continental Slope in the Northern South China Sea”, IEEE J. Oceanic Eng., 29(4), pp. 1105-1130.
Egbert, G. D. and R. D. Ray (2001), “Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data”, Journal of geophysical Research, 106(C10), pp. 22475-22502.
Fasham, M. J. R., H. W. Ducklow, and S. M. McKelvie (1990), “A nitrogen-based model of plankton dynamics in the oceanic mixed layer”, Journal of Marine Research, 48(3), pp. 591-639.
Gill, A. E. (1982), “Atmosphere-Ocean Dynamics”, International Geophyical Series., Vol. 30, San Diego, CA:Academic Press, 662.
Holloway, P. E. and M. A. Merrifield (1999), “Internal tide generation by seamounts, ridges, and islands”, Journal of Geophysical Research, 104(C11), pp. 25937-25951.
Hsu, M.-K., Liu A.-K. and Liu C. (2000), “A study of internal waves in the China Seas and Yellow Sea using SAR”, Continental Shelf Research, Vo1. 20, pp. 389-410.
Hu, J., H. Kawamura, H. Hong, and Y. Qi (2000), “A review on the currents in the South China Sea: seasonal circulation, South China Sea Current and Kuroshio intrusion”, J. Oceangr., 56, 607-624.
Jan, S., C.-S. Chern, J. Wang and S.-Y. Chao (2007), “Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea”, Journal of Geophysical Research, Vol. 112, C06019, doi: 10.1029/2006JC004003.
Jan, S., C.-T. A. Chen, Y.-Y. Tu and H.-S. Tsai (2004), “Physical properties of Thermal Plumes fom a nuclear power plant in the southernmost Taiwan”, Journal of Marine Science and Technology, 12(5), pp. 433-441.
Kang, S. K., M. G. G. Foreman, W. R. Crawford and J. Y. Cherniawsky (2000), “Numerical Modeling of Internal Tide Generation along the Hawaiian Ridge”, Journal of Physical Oceanography, Vol. 30 , pp. 1083-1098.
Kitade, Y., M. Matsuyama and J. Yoshida (2003), “Distribution of Overturn Induced by Internal Tides and Thorpe Scale in Uchiura Bay”, Journal of Oceanography, Vol. 59, pp. 845-850.
Kunze and S. G. Llewellyn Smith (2004), “The Role of Small-Scale Topography in Turbulent Mixing of the Global Ocean”, Special Issue-Bathymetry from Space, 17(1), pp. 55-64.
Kuo, N.-J., Q. Zheng and C.-R. Ho (2000), “Satellite Observation of Upwelling along the Western Coast of the South China Sea”, Remote Sensing of Environment, pp. 463-470.
Laurent, L. S. and C. Garrett (2002), “The Role of Internal Tides in Mixing the Deep Ocean”, Journal of physical oceanography, Vol. 32, pp. 2882-2899.
Lefevre, F., C. L. Provost and F. H. Lyard (2000), “How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the China Sea”, Journal of Geophysical Research, 105(C4), pp. 8707-8725.
Legg, S. and A. Adcroft (2003), “Internal wave breaking at concave and convex continental slopes”, Journal of physical oceanography, Vol. 33, pp. 2224-2246.
Lien, R.-C., T. Y. Tang, M. H. Chang and E. A. D’Asaro (2005), “Energy of nonlinear internal waves in the South China Sea”, Geophysical Research Letters, Vol. 32, L05615, doi: 10.1029/2004GL22012.
Liu, K.-K., S.-Y. Chao, P.-T. Shaw, G.-C. Gong, C.-C. Chen and T.-Y. Tang (2002), “Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study”, Deep-Sea Research II, Vol. 49, pp. 1387-1412.
Liu, K.-K., Y.-J. Chen, C.-M. Tseng, I.-I. Lin, H.-B. Liu and A. Snidvongs (2007), “The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea: Obdervations and numerical investigations”, Deep-Sea Research II, Vol. 54, pp. 1546-1574.
Lueck, R. G. and T. D. Mudge (1997), “Topgrphically induced Mixing Around a Shallow Seamount”, Science, Vol. 276.
Matusumoto, K., T. Takanezawa and M. Ooe (2000), “Ocean tide model developed by assimilating TOPEX/Poseidon altimeter data into Hydrodynamical model: a global model and a regional model around Japan”, Journal of oceanography, Vol. 56, pp. 567-581.
McGillicuddy, D. J., J. J. McCarthy and A. R. Robinson (1995), “Coupled physical and biological modeling of the spring bloom in the North Atlamtic (I): model formulation and one-dimensional bloom process”, Deep-Sea Research I, 42, pp. 1313-1357.
Mellor, G. L. and T. Yamada (1982), “Development of a Turbulence Closure Model for Geophysical Fluid Problems”, Reviews of Geophysics and Space Physics, 20(4), pp. 851-875.
Mellor, G. L. (2004), “User guide for a three-dimensional, primitive equation, numerical ocean model”,
(Http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom)
Merrifield, M. A. and P. E. Holloway (2002), “Model estimates of M2 internal tide energetics at the Hawaiian Ridge”, Journal of Geophysical, 107(C8), doi: 10.1029/2001JC000996.
Metzger, E. J. T. and H. E. Hurlbert (1996), “Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean”, J. Geophys. Res., 101, 12331-12352.
Moum, J. N., D. M. Farmer, W.-D. Smyth, L. Armi and S. Vagle (2003), “Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf”, Journal of Oceanography, Vol. 33, pp. 2093-2112.
Muller, P. and M. Briscoe (2000), “Diapycnal Mixing and Internal Waves”, Regular Issue, 13(2), pp. 98-103.
Munk, W. and C. Wunsch (1998), “Abyssal recipes II:energetics of tidal and wind mixing”, Deep-Sea Research I, Vol. 45, pp. 1977-2010.
Nash, J. D. and J. N. Moum (2005), “River Plumes as a Source of Large-Amplitude Internal Waves in the Coastal Ocean”, Nature, doi: 10.1038/nature03936.
Nash, J. D., E. Kunze, C. M. Lee and T. B. Sanford (2005), “Structure of the Baroclinic Tide Generated at Kaena Ridge, Hawaii”, Journal of Physical Oceanography, Vol. 36, pp. 1123-1135.
New, A. L. and R. D. Pingreet (1990), “Evidence for internal tidal mixing near the shelf break in the Bay of Biscay”, Deep-Sea Research, 37(12), pp. 1783-1803.
Niwa, Y. and T. Hibiya (2004), “Three-dimensional numerical simulation of M2 internal tides in the East China Sea”, Journal of Geophysical Research, Vol. 109, C04027, doi: 10.1029/2003JC001923.
Niwa, Y. and T. Hibiya (2001), “Numerical simulation of spatial distribution of the M2 internal tide in the Pacific Ocean”, Journal of Geophysical Research, 106(C10), pp. 22441-22449.
Office of Naval Research (2004), “An Atlas of Oceanic Inernal Solitary Waves(Feb 2004)”, pp. 371-392.
Pereira, A. F., A. L. Belem, B. M. Castro and R. Geremias (2005), “Tide-topography interaction along the eastern Brazilian shelf”, Continental Shelf Research, Vol. 25, pp. 1521-1539.
Ramp, S. R., T.-Y. Tang, T. F. Duda, J. F. Lynch, A. K. Liu, C.-S. Chiu, F. L. Bahr, H.-R. Kim and Y.-J. Yang (2004), “Internal solitons in the north-eastern South China Sea: Part I. Sources and deep water propagation”, IEEE J. Oceanic Eng., 29(4), pp. 1157-1181.
Ray, R. D. and D. Cartwright (2001), “Estimates of internal tide energy fluxes from TOPEX/Poseidon altimetry: Central North Pacific”, Geophysical Research Letters, 28(7), pp. 1259-1262.
Sea-Bird Electronics, INC. (2007), “SBE 9Plus CTD User’s Manual”, Version 7.16 and later.
Sharpkes J., J. F. Tweddle, J. A. M. Green, M. R. Palmer, Y.-N. Kim, A. E. Hickman, P. M. Holligan, C. M. Moore, T. P. Rippeth, J. H. Simpson and V. Krivtsov (2007), “Spring-neap modulation of internal tide and vertical nitrate fluxes at a shelf edge in summer”, Limnology and Oceanography, 52(5), pp. 1735-1747.
Shaw P.-T. and S.-Y. Chao (1994), “Surface circulation in the South China Sea”, Deep-Sea Research I, 41(11/12), pp. 1663-1683.
Shaw, P.-T., S.-Y. Chao, K.-K. Liu, S.-C. Pai and C.-T. Liu (1996), “Winter upwelling off Luzon in the northeastern South China Sea”, Journal of Geophysical Research, 101(C7), pp. 16435-16448.
Shea, R. E. and W. W. Broenkow (1982), “The role of internal tides in the nutrient enrichment of Monterey Bay, California”, Estuarine, Coastal and Shelf Science, pp. 57-66.
Simmons, H. L., R. W. Hallberg and B. K. Arbic (2004), “Internal wave generation in a global baroclinic tide model”, Deep-Sea Research II, Vol. 51, pp. 3043-3068.
Smagorinsky, J. (1963), “General circulation experiments with the primitive equations: I. The Basic Experiment”, Monthly Weather Review, 91(3), pp. 99-164.
Smagorinsky, J., S. Manabe and J. L. Holloeay (1965), “Numerical results from a nine-level general circulation model of the atmosphere”, Monthly Weather Review, 93(12), pp. 727-768.
Vasiliy, V., Baroclinic Tides: Theoretical Modeling and Observational Evidence., 2, Cambridge University Press., USA, 2005.
Venayagamoorthy, S. K. and O. B. Fringer (2006), “Numerical simulations of the interaction of internal waves with a shelf break”, Phys. Fluids., 18(7), doi: 10.1063/1.2221863.
Yanagi, T., and T. Takao (1998), “A nemerical simulation of tides and tidal currents in the South China Sea”, Acta Oceanogr. Taiwan., 37(1), pp. 17-29.
指導教授 劉康克、詹森
(Kon-kee Liu、Sen Jan)
審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明