博碩士論文 91642002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.22.42.189
姓名 李準勝(Lee Chun-Sheng)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 中台灣造山運動帶河流縱剖面構造地形指標之量化分析
(A Quantitative Analysis for Tectonic Geomorphology Indices of Longitudinal River Profile on the Orogeny of Central Taiwan)
相關論文
★ 抑制鏡煤素反射率之量測成因-以分離台灣裕峰煤為例★ 有機質成熟度之染色技術應用
★ 臺灣中新世石底層煤中硫及微量元素含量之沉積涵義★ 煤素質組成對熱裂分析之影響
★ 大屯火山群地熱氣與溫泉水之地化特性★ 灰關聯分析於水庫水質綜合評判之研究 —以翡翠及石門水庫為例
★ 土石流誘發因子萃取對土石流危險溪流判定之影響★ 石油系統之有機材料與熱成熟度特性探討
★ 石油系統有機材料特性及熱成熟度與油氣潛能之關係探討:以澳洲西北海域為例★ 車籠埔斷層深鑽岩心鏡煤素反射率研究
★ 從岩石風化速率探討南橫山崩 -以敏督莉颱風為例★ 廢棄礦場環境影響綜合評估
★ 河流縱剖面與構造地形指標之量化分析: 以濁水溪為例★ 九份-金瓜石地區火成作用對有機物成熟度之影響
★ 不同成熟度之有機成分探討★ 石門水庫上游集水區水質與復興鄉人文環境之綜合研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於板塊構造活動速率相當緩慢,人類歷史的記載是無法反應長時距的變化,而構造地形指標具有反應較長時距構造運動特徵的性質。本研究的目的是以河道縱剖面的數學擬合函數和坡降指數,以及流水下切動力學模型為基礎的坡度與面積關連性等所得的各種構造地形指標的量化分析,來探索在中台灣的造山運動帶上,東西兩側不同的大地構造運動所呈現的差異性及其構造地形演化上的各種特性。
數學擬合函數是以對數型和指數型兩種函數,來說明河道縱剖面形式的特徵與大地構造運動的關係。由各主支流河道縱剖面所得到常態化坡降指數(SL/k)的成果,標示在二維剖面與二維平面圖中,來探討受大地構造運動下其地形地貌的特性。坡度與面積關連性是以流水下切動力模型為基礎,由其凹曲度(θ:代表地貌特徵)和常態化陡度(ksn:代表地盤抬昇程度)兩個構造地形指標來探索構造地形的特徵。
本研究得到結果如下:
1. 中央山脈東西兩側不同的數學擬合函數(西側多為對數型,東側多為指數型)和凹曲度(θ)指標,可以說明在中台灣造山帶的地形地貌上所呈現東西兩側的不對稱性。
2. SL/k可以反應河流構造地形的岩性、遷急點、連續峽谷地形、地盤活動性等,同時也反應河流流路與斷層構造幾何關係的地盤活動性趨勢。
3. 中央山脈兩側log(ksn)的平均值幾乎是趨於相同的數值,以及在中央山脈兩側的對數型與指數型擬合的判別係數值相近,說明中台灣的造山運動帶正處於均衡狀態。
4. 由本研究ksn和SL/k的量化分析結果,本研究得到四個分區的大地構造活動性趨勢為西部麓山帶地區>雪山山脈地區>中央山脈東翼地區>中央山脈西翼地區,以及近50~60年的平均降雨量亦或是與面積有關的流量對於 的反應是沒有明顯的關聯性,因此在長時距地質時間的河流演化上,氣候和岩性不是控制河流演化的重要因子,而是大地構造運動。
摘要(英) Due to the plate movement is considerably slow, human history record is too short to identify landscape change for such a long time scale. However, tectonic geomorphology indices can display the characteristics of tectonic movement in a long time. Therefore, the purpose of this study is to evaluate the difference of tectonic movement and characteristics of tectonic evolution between east and west sides of the orogeny in Central Taiwan, by applying a quantitative analysis of geomorphic indices coupled with mathematical fitting function, gradient index and slope vs area relationship from stream power model.
Both logarithmic and exponential function of mathematical fitting function were used to illustrate the characteristics of river longitudinal profile and the relationship with tectonic movement. Furthermore, normalized gradient index (SL/k) from the river longitudinal profile of main and tributary was used to plot the 2-D profile for illustrating the characteristics of landscape. Additionally, the concavity (θ: represented to the characteristic of landscape) and steepness ( : represented to the degree of rock lift) from the slope vs area relationship of the stream power model were further applied to examine the characteristics of tectonic movement.
The results of this study are listed as following:
1. Different results for the mathematical fitting function were found, in which most of logarithmic function were found on the west side, and most of exponential function were found on the east side. Concavity (θ) also showed the asymmetric landscape of the orogeny in Central Taiwan.
2. Normalized gradient index (SL/k) can response the behavior of rock, knickpoint, continuous-gorge, the active of rock movement, as well as the relationship between geometry of the flow path and the active trend of rock movement.
3. Average log(ksn) and the coefficient of determination (R2) of exponential and logarithmic function were similar for both sides of Central Range. Therefore, this study implied that the orogeny of Central Taiwan is in a steady state.
4. According to the quantitative analysis of geomorphic indices coupled with and SL/k, the degrees of tectonic movement trend are Western Foothills Belt > Hsuehshan Range Belt > Eastern Backbone Ridges Belt > Western Backbone Ridges Belt. Furthermore, the average precipitation in the past 50~60 years and the flow versus the normalized steepness (ksn) index exhibit no remarkable relationship. This study suggested that the control factor of stream evolution is tectonic movement, not the resistance of rock stratum nor climate.
關鍵字(中) ★ 常態化坡降指數(SL/k)
★ 凹曲度(θ)
★ 常態化陡度( ksn)
★ 坡降指數(SL)
★ 流水下切動力模型
★ 數學擬合函數
★ 構造地形指標
關鍵字(英) ★ normalized gradient index (SL/k)
★ gradient index (SL)
★ normalized steepness (ksn)
★ concavity (θ)
★ stream power model
★ mathematical fitting function
★ Tectonic geomorphology indices
論文目次 中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
圖目錄 vii
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 大地構造運動地形地貌的演化模型 3
1.3 中台灣構造地質概況 6
1.3.1 台灣地質構造框架 6
1.3.2 中台灣東部大地構造演化 8
1.3.3 中台灣中部大地構造演化 8
1.3.4 中台灣的區域地質 10
1.4 資料處理方法 11
1.5 本文概要 13
第二章 河道縱剖面的數學擬合函數 22
2.1 理論基礎與應用 22
2.2 研究方法 24
2.3 結果與討論 25
2.3.1 分水嶺至出海口縱剖面數學函數擬合 25
2.3.2 一公里處至出海口縱剖面數學函數擬合 26
2.3.3 大地構造分析 27
第三章 坡降指數 46
3.1 理論基礎與應用 46
3.2 研究方法 48
3.3 結果與討論 49
第四章 坡度-面積關連性 71
4.1 理論基礎與應用 71
4.2 研究方法 73
4.3 結果與討論 74
4.3.1 凹曲度(θ)指標反應在河谷地形地貌的變動趨勢 75
4.3.2 陡度( )指標在地質岩性和構造活動性的變動趨勢 77
4.3.3 氣候與陡度( )指標的關連性 78
第五章 綜合討論 102
5.1 構造地形指標的適用性 102
5.2 中央山脈兩側的不對稱性 103
5.3 大地構造運動 104
5.4 均衡山脈 106
第六章 結論 109
參考文獻 111
圖1.2.1三種不同構造運動模型示意圖 14
圖1.2.2 集水區範圍的地形元素示意圖 14
圖1.2.3 觸發(impulsive)、偏離(varying)和持續(sustained)三種型態模型 15
圖1.3.1台灣的地質框架圖 16
圖1.3.2台灣大地構造碰撞架構圖 17
圖1.3.3中台灣西部的地質框架圖 18
圖1.3.4中台灣西部第四紀地層與構造演化圖 18
圖1.3.5中台灣東部的地質框架圖 19
圖1.3.6 中台灣地區地質圖 20
圖1.4.1 網格流向定義示意圖 21
圖1.4.2 數值地形模型窪地填高示意圖 21
圖2.2.1 四種簡單數學函數剖面形態示意圖 29
圖2.3.1 大安溪縱剖面對數型與指數型擬合函數成果圖 31
圖2.3.2 大甲溪主流縱剖面對數型與指數型擬合函數成果圖 31
圖2.3.3 南湖溪→大甲溪主流縱剖面對數型與指數型擬合函數成果圖 32
圖2.3.4 合歡溪→大甲溪主流縱剖面對數型與指數型擬合函數成果圖 32
圖2.3.5 志樂溪→大甲溪主流縱剖面對數型與指數型擬合函數成果圖 33
圖2.3.6 北港溪→烏溪主流縱剖面對數型與指數型擬合函數成果圖 33
圖2.3.7 眉溪→烏溪主流縱剖面對數型與指數型擬合函數成果圖 34
圖2.3.8 濁水溪主流縱剖面對數型與指數型擬合函數成果圖 34
圖2.3.9 萬大溪→濁水溪主流縱剖面對數型與指數型擬合函數成果圖 35
圖2.3.10 卡社溪→濁水溪主流縱剖面對數型與指數型擬合函數成果圖 35
圖2.3.11 丹大溪→濁水溪主流縱剖面對數型與指數型擬合函數成果圖 36
圖2.3.12 郡大溪→濁水溪主流縱剖面對數型與指數型擬合函數成果圖 36
圖2.3.13 陳有蘭溪→濁水溪主流縱剖面對數型與指數型擬合函數成果圖 37
圖2.3.14 清水溪→濁水溪主流縱剖面對數型與指數型擬合函數成果圖 37
圖2.3.15 和平北溪→和平溪主流縱剖面對數型與指數型擬合函數成果圖 38
圖2.3.16 和平南溪→和平溪主流縱剖面對數型與指數型擬合函數成果圖 38
圖2.3.17 闊闊庫溪→和平溪主流縱剖面對數型與指數型擬合函數成果圖 39
圖2.3.18 塔次基里溪→立霧溪主流縱剖面對數型與指數型擬合函數成果圖 39
圖2.3.19 瓦黑爾溪→立霧溪主流縱剖面對數型與指數型擬合函數成果圖 40
圖2.3.20 陶塞溪→立霧溪主流縱剖面對數型與指數型擬合函數成果圖 40
圖2.3.21 清水溪→木瓜溪主流縱剖面對數型與指數型擬合函數成果圖 41
圖2.3.22 巴托蘭溪→木瓜溪主流縱剖面對數型與指數型擬合函數成果圖 41
圖2.3.23 帕托魯溪→木瓜溪主流縱剖面對數型與指數型擬合函數成果圖 42
圖2.3.24 檜溪→木瓜溪主流縱剖面對數型與指數型擬合函數成果圖 42
圖2.3.25 壽豐溪縱剖面對數型與指數型擬合函數成果圖 43
圖2.3.26 萬里橋溪縱剖面對數型與指數型擬合函數成果圖 43
圖2.3.27 馬太鞍溪縱剖面對數型與指數型擬合函數成果圖 44
圖2.3.28 富源溪縱剖面對數型與指數型擬合函數成果圖 44
圖2.3.29 豐坪溪縱剖面對數型與指數型擬合函數成果圖 45
圖3.1.1均夷河流縱剖面因斷層活動調整順序示意圖 52
圖3.1.2 河流坡降指數與Hack剖面示意圖 53
圖3.3.1 大安溪縱剖面和SL/k值 54
圖3.3.2 大甲溪主流縱剖面和SL/k值 54
圖3.3.3 南湖溪→大甲溪主流縱剖面和SL/k值 55
圖3.3.4 合歡溪→大甲溪主流縱剖面和SL/k值 55
圖3.3.5 志樂溪→大甲溪主流縱剖面和SL/k值 56
圖3.3.6 北港溪→烏溪主流縱剖面和SL/k值 56
圖3.3.7 眉溪→烏溪主流縱剖面和SL/k值 57
圖3.3.8 濁水溪主流縱剖面和SL/k值 57
圖3.3.9 萬大溪→濁水溪主流縱剖面和SL/k值 58
圖3.3.10 卡社溪→濁水溪主流縱剖面和SL/k值 58
圖3.3.11 丹大溪→濁水溪主流縱剖面和SL/k值 59
圖3.3.12 郡大溪→濁水溪主流縱剖面和SL/k值 59
圖3.3.13 陳有蘭溪→濁水溪主流縱剖面和SL/k值 60
圖3.3.14 清水溪→濁水溪主流縱剖面和SL/k值 60
圖3.3.15 和平北溪→和平溪主流縱剖面和SL/k值 61
圖3.3.16 和平南溪→和平溪主流縱剖面和SL/k值 61
圖3.3.17 闊闊庫溪→和平溪主流縱剖面和SL/k值 62
圖3.3.18 塔次基里溪→立霧溪主流縱剖面和SL/k值 62
圖3.3.19 瓦黑爾溪→立霧溪主流縱剖面和SL/k值 63
圖3.3.20 陶塞溪→立霧溪主流縱剖面和SL/k值 63
圖3.3.21 清水溪→木瓜溪主流縱剖面和SL/k值 64
圖3.3.22 巴托蘭溪→木瓜溪主流縱剖面和SL/k值 64
圖3.3.23 帕托魯溪→木瓜溪主流縱剖面和SL/k值 65
圖3.3.24 檜溪→木瓜溪主流縱剖面和SL/k值 65
圖3.3.25 壽豐溪縱剖面和SL/k值 66
圖3.3.26 萬里橋溪縱剖面和SL/k值 66
圖3.3.27 馬太鞍溪縱剖面和SL/k值 67
圖3.3.28 富源溪縱剖面和SL/k值 67
圖3.3.29 豐坪溪縱剖面和SL/k值 68
圖3.3.30 SL/k在區域地質圖上分布 69
圖3.3.31 中央山脈西側各流域各地質分區常態化坡降指數(SL/k)圖 70
圖3.3.32 中央山脈東側各流域各地質分區常態化坡降指數(SL/k)圖 70
圖4.1.1 四種不同區塊範圍之S-A關係圖 83
圖4.3.1 大安溪主流之S-A關係圖 83
圖4.3.2 大甲溪主流之S-A關係圖 84
圖4.3.3 南湖溪→大甲溪主流之S-A關係圖 84
圖4.3.4 合歡溪→大甲溪主流之S-A關係圖 85
圖4.3.5 志樂溪→大甲溪主流之S-A關係圖 85
圖4.3.6 北港溪→烏溪主流之S-A關係圖 86
圖4.3.7 眉溪→烏溪主流之S-A關係圖 86
圖4.3.8 濁水溪主流之S-A關係圖 87
圖4.3.9 萬大溪→濁水溪主流之S-A關係圖 87
圖4.3.10 卡社溪→濁水溪主流之S-A關係圖 88
圖4.3.11 丹大溪→濁水溪主流之S-A關係圖 88
圖4.3.12 郡大溪→濁水溪主流之S-A關係圖 89
圖4.3.13 陳有蘭溪→濁水溪主流之S-A關係圖 89
圖4.3.14 清水溪→濁水溪主流之S-A關係圖 90
圖4.3.15 和平北溪→和平溪主流之S-A關係圖 90
圖4.3.16 和平南溪→和平溪主流之S-A關係圖 91
圖4.3.17 闊闊庫溪→和平溪主流之S-A關係圖 91
圖4.3.18 塔次基里溪→立霧溪主流之S-A關係圖 92
圖4.3.19 瓦黑爾溪→立霧溪主流之S-A關係圖 92
圖4.3.20 陶塞溪→立霧溪主流之S-A關係圖 93
圖4.3.21 清水溪→木瓜溪主流之S-A關係圖 93
圖4.3.22 巴托蘭溪→木瓜溪主流之S-A關係圖 94
圖4.3.23 帕托魯溪→木瓜溪主流之S-A關係圖 94
圖4.3.24 檜溪→木瓜溪主流之S-A關係圖 95
圖4.3.25 壽豐溪主流之S-A關係圖 95
圖4.3.26 萬里橋溪主流之S-A關係圖 96
圖4.3.27 富源溪主流之S-A關係圖 96
圖4.3.28 馬太鞍溪主流之S-A關係圖 97
圖4.3.29 豐坪溪主流之S-A關係圖 97
圖4.3.30 log( )標示在區域地質之成果圖 98
圖4.3.31 log( )標示在1949~2006年平均降雨量分布之成果圖 99
圖4.3.32 log( )標示在臺灣各三角點升降率等值線分布之成果圖 100
圖4.3.33 log( )標示在最大地震加速度之機率式地震災害圖 101
表2.3.1主支流河道縱剖面對數型與指數型擬合函數之判別係數成果表 30
表4.3.1中央山脈東側地形參數資料表 80
表4.3.2中央山脈西側地形參數資料表 81
表4.3.3 各分區之地形參數平均值表 82
參考文獻 Bonilla, M.G., Summery of Quaternary faulting and elevation change in Taiwan, Mem. Geol. Soc. China, 2, 43-56, 1977.
Brookfield, M.E., The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: river draining southwards, Geomorphology, 22, 285-312, 1998.
Carlston, C.W., Slope-discharge relaations for eight rivers in the United States, U.S. Geol. Survey Prof. Paper 600-D, 45-47, 1968.
Chen, Y.C., Q. Sung, and K.Y. Cheng, Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis, Geomorphology, 56, 109-137, 2003.
Chen, Y. C., Q. Sung, C. N. Chen, J. S. Jean, Variations in tectonic activities of the central and southwestern Foothills, Taiwan, inferred from river hack profiles. Terr. Atmos. Ocean. Sci., 17, 563-578, 2006.
Chen, W.S., K.D. Ridgway, C.S. Horng, Y.G. Chen, K.S. Shea and M.G. Yeh, Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan. Geol. Soc. Am. Bull., 113, 1249-1271, 2001.
Cheng C.T., S.J. Chiou, C.T. Lee and Y.B. Tsai, Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake, Journal of GeoEngineering, Vol.2, No.1, 19-28, 2007.
Chou, J.T., Sedimentology and palegeograph of the Pleistocene Toukoshan Formation in western Taiwan, Petrol. Geol. Taiwan, 14, 25-26, 1977.
Covey, M., Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep. Perol. Geol. Taiwan, 20-53-83, 1984.
Covey, M., The evolution of foreland basin to steady state:evidence from the western Taiwan foreland basin. Int. Assoc. Sediment . Spec. Publ., 8,77-90, 1986.
Dadson, S.J., N. Hovius, H. Chen, W.B. Dade, M.L. Hsieh, S.D. Willett, J.C. Hu, M.J. Horng, M.C. Chen, C.P. Stark, D.L. and J.C. Lin, Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426, 648-651, 2003.
Douglas W.B. and S.A. Robert, Tectonic geomorphology, Malden, Mass.: Blackwell Science, 186-190, 2001.
Drew B. S., D.W. Sean and R.M. David Characterization of topographic steady state in Taiwan, Earth and Planetary Science Letters, 261: 421-431, 2007.
Fuller, C.W., S.D. Willett, D. Fisher and C.Y. Lu A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425, 1-24, 2006.
Gilbert, G.K., Report on the geology of the Henry Mountains, U.S. Geol. Survey Rocky Mt. Region, 160p, 1877.
Hack, J.T., Studies of longitudinal stream profile in Virginia and Maryland, U.S. Geol. Surv, Prof., Paper 294-B, 45-95, 1957.
Hack, J.T., Stream-profile analysis and stream-gradient index, U.S. Geol. Surv, J. Res., 1, 421-429, 1973.
Hilley, G. E., and M. R. Strecker, Steady state erosion of critical Coulomb wedges with applications to Taiwan and the Himalaya, J. Geophys. Res., 109, B01411, doi:10.1029/2002JB002284, 2004.
Ho C.S., A synthesis of the geologic evolution of Taiwan, Tectonophysics, 125: 1-16, 1986.
Howard, A.D., M.A. Seidl, and W.E. Dietrich, Modeling fluvial erosion on regional to continental scales, J. Geophys. Res., 99, 13971-13986, 1994.
Hsu, T.L., Recent faulting in the Longitudinal valley of eastern Taiwan, Mem. Geol. Soc. China, 1, 95-102, 1962.
Jenson, S.K. and J.O. Domingue, Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis, Photogrammetric Engineering & Remote Sensing, 54(11):1593-1600, 1988.
Jone, O.T., Longitudinal profile of the upper Towy drainage system, Quart. Jour. Geol. Soc. London, v80, 568-609, 1942.
Kao, H., S.J. Shen, K.F. Ma, Transition from oblique subduction to collision: Earthquake in the southernmost Ryukyu arc-Taiwan region, Jour. Geophys. Res., 103, 7211-7229, 1998.
Keller, E.A., and N. Pinter, Active Tectonic: earthquake, uplift, and landscape, second edition, Prentice Hall, New Jersey, 2002.
Kirby, E., K. X. Whipple, W. Tang, and Z. Chen, Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles, Jour. Geophys. Res., 108(B4), 2217, doi:10.1029/2001JB000861, 2003.
Kooi, H., and C. Beaumont, Large-scale geomorphology: classical concepts reconciled and integrated with contemporary ideas via a surface processes model: Journal of Geophysical Research, v101:3361-3386, 1996.
Kuochen, H., Y.M. Wu, C.H. Chang, J.C. Hu and W.S. Chen, Relocation of the eastern Taiwan earthquakes and its tectonic implication, Terr. Atmos. Qceanic Sci., vol.15, 647-666, 2004.
Lee, C.S. and Louis L. Tsai, A quantitative analysis for geomorphic indices of longitudinal river profile: a case study of the Choushui River, Central Taiwan, Environ Earth Sci, DOI 10.1007/s12665-009-0140-3, 2009.
Lee, C.T., Methods of Stress Analysis and Paleostress Changes in Northern Taiwan due to Arc-continent Collision, Ph. D. dissertation, Institute of Geosciences, National Taiwan University. 1986.
Lee, C.T. and Y. Wang, Quaternary stress changes in northern Taiwan and their tectonic implication, Proc. Geol. Soc. China, 31, 154-168, 1988.
Leopold, L.B. and T.U. Maddock, The hydraulic geometry of stream channels and some physiographic implactions, U.S. Geol. Survey Prof. Paper 252, 57p, 1953.
Leopold, L.B. and W.B. Langbein, The concept of entropy in landscape evolution, U.S. Geol. Survey Prof. Paper 500-A, 1-20, 1962.
Li, Y.H., Denudation of Taiwan Island since the Pliocene Epoch, Geology, 4, 105-107, 1975.
Lin, A.T. and A.B. Watts, Origin of the western Taiwan basin in orogenic loading and flexure of a rifted continental margin. J. Geophys. Res., 107, ETG2-1~19, 2002.
Lin, A.T., A.B. Watts and S.P. Hesselbo, Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Res., 15,453-478, 2003.
Lin, J.C., Morphotectonic evolution of Taiwan, Geomorphology and Globe Tectonics, 135-146, 1999.
Liu T.K., Tectonic implications of fission-track ages from the Central Range, Taiwan. Proc. Geol. Soc. China, 25, 22–37, 1982.
Mackin, J.H., Concept of the graded stream, Geol. Soc. Am. Bull., 59, 463-512, 1948.
Merritts, D. and K.R. Vincent, Geomorphic response of coastal stream to low, intermediate, and high rates of uplift, Mendocino Triple Junction region, Northern California, Geol. Soc. Am. Bull., 110, 1373-1388, 1989.
Monthereau, F., O. Lacombe, B. Deffontaines, J. Angelier and S. Brusset, Deformation history of the southwestern Taiwan foreland thrust belt;insights from tectono-sedimentary analyses and balanced cross-secions. Tectonophys., 333,293-322, 2001.
Ohmori, H., Change in the mathematical function type describing the longitudinal profile of a reiver through an evolutionary process, Journal of Geology, 99, 97-110, 1991.
Peng, T.H., Y.H. Li, and F.T. Wu, Tectonic uplift rates of the Taiwan island since the early Holocene, Mem. Geol. Soc. China, 2, 57-69, 1977.
Rãdoane, M.,N. Rãdoane, and D. Dumitriu, Geomorphological evolution of longitudinal river profiles in the Carpathians, Geomorphology, 50, 293-306, 2003.
Scheidegger, A.E., Theoretical geomorphology (2d ed), Englewood Cliffs, NJ, Prentice-Hall, 435p, 1970.
Seeber, L., and V. Gornitz, River profile along the Himalayan arc as indictors of active tectonics, Tectonophysics, 92, 335-367, 1983.
Shulits, S., Rational equation of river-bed profile, Am. Geophy. Union Trans., v22, 622-630, 1941.
Shyu, J. B. H., K. Sieh, Y.-G. Chen, and C.-S. Liu, Neotectonic architecture of Taiwan and its implications for future large earthquakes, J. Geophys. Res., 110, B08402, doi:10.1029/2004JB003251, 2005.
Shyu, J.B.H., K. Sieh, Y.G. Chen and L.H. Chung, Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan, Geological. Society. America Bulletin, November/December, 1447-1462, 2006a.
Shyu, J.B.H., K. Sieh, J.P. Avouac, W.S. Chen and Y.G. Chen, Millennial slip rate of the Longitudinal Valley fault from river terraces:Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Reseach-solid Earth, vol. 111, B08403, 2006b.
Simoes, M. and J.P. Avouac, investigating the Kinematics of mountain building in Taiwan from the spatiotemporal evolution of the foreland basin and western foothills, J. Geophys. Res., 111,B10401, 2006.
Sklar, L., and W. E. Dietrich, River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply, Rivers Over Rock: Fluvial Processes in Bedrock Channels, Geophys. Monogr. Ser., vol. 107, edited by K. J. Tinkler and E. E. Wohl, pp. 237–260, AGU, Washington, D. C., 1998.
Snow, R.S., and R.L. Slingerland, Mathematical modeling of graded river profile, Journal of Geology, 95, 15-33, 1987.
Snow, R.S., and R.L. Slingerland, Stream profile adjustment to crustal warping:nonlinear results from a simple model, Journal of Geology, v98:699-708, 1990.
Snyder, N.P., K.X. Whipple, G.E. Tucker, and D.J. Merritts, Channel response to tectonic forcing: Analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California, Geomorphology, 53, 97-127, 2003.
Stark, C.P. and N. Hovius, Evolution of a mountain belt toward steady state: analysis of the Central Range, Taiwan, EOS (Transactions of the American Geophysical Union), 79: 357, 1998.
Stolar D.B., S.D. Willett and D.R. Montgomery, Characterization of topographic steady state in Taiwan, Earth and Planetary Science Letters, 261, 421-431, 2007.
Strahler, A.N., Dynamic basis of geomorphology, Geol. Soc. Am. Bull., v63, 923-938, 1952.
Summerfield, M.A., Global geomorphology, An introduction to the study of landform: Essex, England, Longman Scientific Technical, 537p, 1991.
Sung, Q.C., Y.C. Chen, H. Tasi, Y.G. Chen, W.S. Chen. Comparison Study on the Coseismic Deformation of the 1999 Chi-Chi Earthquake and Long-term Stream Gradient Changes Along the Chelungpu Fault in the Central Taiwan. Terr. Atmos. Ocean. Sci., 11, 735-750, 2000.
Suppe, J., Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Sco. China, 4, 67-89, 1981.
Suppe, J., Kinematics of arc-continent collision, Flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21-33, 1984.
Suppe, J., The active mountain belt. In: Schaer, S.P. and Rodgers, J. (eds.) The Anatomy of Mountain Ranges, New Jersey: Princeton University Press, 277-293, 1987.
Teng, L.S., Stratigraphic records of the late Cenozoic Penglai Orogeny of Taiwan. Acta. Geol. Taiwan., 25, 205-224, 1987.
Teng, L.S., W.S. Chen, Y. Wang, S.R. Song and H.J. Lo, Toward a comprehensive stratigraphic system of the Coastal Range, eastern Taiwan. Acta Geologica Taiwanica., 26, 19-35, 1988.
Teng, L.S., Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183: 57-76, 1990.
Teng, L.S., Extensional collapse of the northern Taiwan mountain belt, Geology, 24: 945-952, 1996.
Teng, L.S. and C.T. Lee, Geomechanical appraisal of seismogenic faults in northeast Taiwan, Proc. Geol. Soc. China, 39, 2, 125-142, 1996.
Teng, L.S., C.T. Lee, C.H. Peng, W.F. Chen and C.J. Chu, Origin and geological evolution of the Taipei Basin northern Taiwan, Western Pacific Earth Science, 1: 115-142, 2001.
Tinkler, K.J., and E.E. Wohl, Rivers Over Rock:Fluvial Processes in Bedrock Channel, Geophys. Monogr. Ser., vol 107, 323 p., AGU, Washington, D. C. , 1998.
Tsai, Y.B., Seismotectonics of Taiwan. Teconophysics., 125, 17-37, 1986.
Whipple, K. X., and G. E. Tucker, Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res., 104, 17661-17674, 1999.
Whipple, K.X., Fluvial landscape response time: How plausible is steady state denudation?, Am. J. Sci., 301, 313-325, 2001.
Whipple, K.X., and G.E. Tucker, Implication of sedminent-flux-dependent river incision models for landscape evolution, J. Geophys. Res., 107, 2039, doi:10.1029/2000JB000044, 2002.
Whipple, K.X., Bedrock rivers and the geomorphology of active orogens, Annu. Rev. Earth Planet. Sci., 32, 151-185, 2004.
Whipple, K.X., and B.J. Meade, Orogen response to changes in climatic and tectonic forcing, Earth and Planetary Science Letters, 243, 218-228, doi:10.1016/j.epsl.2005.12.022, 2006.
Willett, S.D. and M.T. Brandon, On steady states in mountain belts, Geology, 30(2), 175-178, 2002.
Willet, S.D., C.W. Fisher, C.W. Fuller, E.C. Yhe and C.Y .Lu, Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry, Geology, 31, 945-948, 2003.
Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D., Tectonics from topography: Procedures, promise, and pitfalls”, in Willett, S.D., Hovius, N., Brandon, M.T., and Fisher, D.M., eds., Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398, Penrose Conference Series, p. 55–74, doi: 10.1130/2006.2398(04), 2006.
Woodford, A.D., Stream gradients and Monterey sea valley, Geol. Soc. Am. Bull., v62, 799-852, 1951.
Wu, F.T., Recent tectonics of Taiwan, Jour. Phys. Earth 26, Suppl. S265-S299, 1978.
Wu, F.T., R.J. Rau and David Salzberg, Taiwan orogeny: thin Skinned or lithospheric collision?, 274, 191-220, 1997.
Wu, Y.M., Y.G. Chen, C.H. Chang, L.H. Chung, T.L. Teng, F.T. Wu and C.F. Wu, Seismogenic structure in a tectonic suture zone: With new constraints from 2006 Mw6.1 Taitung earthquake. Geophysical Research Letters, vol. 33. L02302, 2006.
Yang, C.T., Potential energy and stream morphology, Water Resour. Res. v7, 311-322, 1971.
Yatsu, E., On the longitudinal profile of the graded river, Am. Geophys. Union Trans. v36, 655-663, 1955.
Yeh, Y.H., E. Barrier, C.H. Lin and J. Angelier, Stress tensor analysis in the Taiwan area from focal mechanisms of earthquake, Teconophys., 200, 267-280, 1991.
Yu, S.B. and L.C. Kuo, Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333, 199-217, 2001.
Yu, S.B., H.Y. Chen, and L.C. Kuo, Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59, 1997.
中央地質調查所,「台灣地質圖」,比例尺:二十五萬分之一,1974。
何春蓀,台灣地質概論(二版),經濟部中央地質調查所出版,共163頁,1988。
周素卿、鄧屬予、鍾火盛、蕭從文,臺灣西部前陸盆地地史分析初探。臺灣石油地質,第29卷,289-323,1996。
林昭遠,集水區地形因子自動萃取之研究-土石流危險溪流判釋之應用,中華水土保持學報,31(1):81-91,2000。
林朝棨,「台灣地形」,台灣省文獻委員會,台灣省通志稿,卷1,第一冊,共423頁,1957。
紀文榮、梅文威、吳榮章,苗栗-台中地區新地三紀地層之超微體生物地層研究,探採研究彙報,第7期,52-68,1984。
陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰桂、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正、黃能偉,上-更新世臺灣西部前陸盆地的演化;沉積層序與沉積物組成的研究。經濟部中央地質調查所彙刊,第13號,137-156,2000a。
陳文山、陳于高、劉聰桂、黃能偉、林清正、宋時驊、李昆杰,九二一集集大地震的地震斷層特性與構造意義。經濟部中央地質調查所特刊,第12號,139-154,2000b。
陳彥傑,台灣山脈的構造地形指標特性—以面積高度積分、地形碎形參與河流坡降指標為依據,國立成功大學用地球科學研究所博士論文,共129頁,2004。
陳彥傑、宋國城、陳昭男,非均衡山脈的河流水力侵蝕模型,科學通報,第51卷,第7期,865-869,2006。
陳彥傑,臺灣山脈地形演育的測高曲線與高程頻率分佈形態,地理學報,54,79-97,2008。
陳振華、陳文山、王源、陳勉銘,由臺灣中部前陸砂岩之岩象研究看褶皺逆衝帶之剝蝕歷史,地質,第12卷,第2期,147-165,1992。
陳培源,台灣地質,台灣省應用地質技師公會,p2-1~p2-22,2006。
陳惠芬,從三角點檢測成果見到的台灣的地盤升降,經濟部中央地質調查所特刊,第三號,127-140,1984。
陳肇夏、朱傚祖、莊德永,台灣中央山脈的一些構造問題,經濟部中央地質調查所彙刊,第二號,p1~16,1983。
黃筱婷,嘉義地區的相對構造活動速率及其與地表地形的相關性:利用河流水力侵蝕模型,台灣大學地質科學系,碩士論文,共106頁,2008。
楊萬慧,應用地形分析方法研究台灣中央山脈東翼地表抬升,中央大學地球物理研究所,碩士論文,共106頁, 2007。
經濟部水利署,中華民國96年年台灣水文年報-總冊,2008。
廖何松,利用地形計測指標研究台灣南部潮州斷層沿線之活動構造,中央大學地球物理研究所,共124頁,碩士論文,2003。
廖智彥,河流縱剖面與構造地形指標之量化分析-以濁水溪為例,中央大學應用地質研究所,碩士論文,共60頁,2007。
鄧屬予,台灣新生代大地構造,台灣大地構造,中國地質學會出版,49-93,2002。
鄧屬予,台灣第四紀大地構造,台灣第四紀研究-回顧與前瞻,經濟部中央地質調查所特刊,第十八號,1-24,2007。
指導教授 蔡龍珆(Louis L. Tsai) 審核日期 2009-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明