博碩士論文 93642007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.129.217.49
姓名 郭俊翔(Chun-Hsiang Kuo)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 微地動特性的研究及應用
(Study and Application of the Microtremor Characteristics)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 臺灣中部地區強地動波形模擬
★ 利用接收函數法推估蘭陽平原淺層速度構造★ 蘭陽平原場址效應及淺層S波速度構造
★ 探討不同地質區強震站之淺層S波速度構造★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 以恆春地震探討高屏地區之場址效應★ 利用隨機式震源模型探討蘭陽平原之場址效應
★ 利用時頻分析技術檢視土壤非線性反應★ 台灣潛勢地震之發生機率評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微地動量測正逐漸地被應用在場址放大效應的評估,以及剪力波速剖面之推求上。然而,微地動的組成成份仍舊是一個未解且有爭論的議題。中村豐教授提出單站頻譜比法並主張微地動單站頻譜比於主頻的放大效應主要是由多重反射的SH波所構成,而非被大多數學者所認為的雷利波。本研究亦透過幾項有力的證據證明中村豐教授之理論:(1)雷利波橢圓率之主頻放大倍率與微地動的單站頻譜比主頻之放大倍率在大多數情況下皆有很大的差距;相較之下,其與SH波的轉換函數之主頻放大率則相當近似;(2)相速度有時候會在主頻附近呈現不穩定的現象;(3)頻譜比之共振放大及凹下處之質點運動形態的差異;(4)雷利波的橢圓率無法模擬微地動頻譜比的雙主頻現象,而SH波轉換函數卻可以。然後,本研究建立了一個可以更精確的推求剪力波速剖面,同時又可以增加小型微地動陣列之解析深度至基盤的聯合逆推法,並採用此方法推求位於臺北盆地之七個強震站下的剪力波速構造。其中TAP089吳興國小微地動陣列各測點之單站頻譜比彼此之間有相當明顯的差異,因此對每一測點採用單站頻譜逆推法去求得此陣列下的三維速度構造。另外,本研究中也以複回歸法求得臺北盆地及宜蘭地區的剪力波速經驗式,並使用328個強震站的井測波速資料(井深皆30米以上)測試三種常用之波速外插法(最小平方法,統計法,底部常數法)。測試結果顯示底部常數法之精確性最佳,故採用此外插法推求井深未達30米之強震站的近地表30米內之平均剪力波速,並提出最新之台灣強震站的場址分類。
摘要(英) Microtremor measurement has been increasingly adopted to assess site amplification and S-wave velocity profile at sites. However, the composition of microtremor is still a debatable issue. Nakamura claimed that the resonant peak on the dominate frequency of HVSR of microtremor is mainly constructed by the multi-reflection of SH waves rather than Rayleigh waves. This study identified the theory via several evidences: (1) Large disparity on amplifications between ellipticity of Rayleigh waves and HVSR of microtremor; by contrast, disparity between SH transfer function and HVSR of microtremor is much smaller. (2) Phase velocities sometimes become unstable when near the dominate frequency. (3) The difference of particle motions of resonant peak and trough. (4) The ellipticity of Rayleigh waves can not simulate the double peak at a known site, whereas the SH-wave transfer function can. Hereafter, this study developed a joint inversion method to estimate S-wave velocity profiles more accurate and increase the detectable depth until bedrock for a small array. By using the technique, S-wave velocity subsurface structures were estimated at seven strong motion stations in the Taipei Basin. Furthermore, significant discrepancy was detected on each HVSR of TAP089, and then adopted the HVSR inversion to find the 3D subsurface structure beneath this array. Additionally, empirical equations for S-wave velocity in the Ilan area and the Taipei Basin were evaluated by relating the relation of S-wave velocity, N-value, and depth using a multivariable regression approach. Three extrapolations called LSS, STS, and BCV were examined in this study by using 328 DH, and the BCV is obviously the most accurate one. Therefore, a new site classification for TSMIP stations in Taiwan was proposed.
關鍵字(中) ★ 微地動
★ 速度剖面
★ 單站頻譜比
★ 聯合逆推法
★ 場址分類
關鍵字(英) ★ microtremor
★ joint inversion
★ HVSR
★ site classification
★ Vs30
★ Vs profile
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgements iii
Contents iv
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Literature Review and Motivation 3
1.2 Contents 7
1.3 Outline 8
Chapter 2 Data Acquisition 11
2.1 Borehole Data of TSMIP Stations 11
2.2 SWPM Measurements 12
2.3 Microtremor Array Measurements 12
2.4 ESG Data 13
2.5 Empirical Vs Equations and Site Classification 14
Chapter 3 Methodology 25
3.1 Methodologies of Microtremor Array Analysis 25
3.1.1 Frequency-Wavenumber (F-K) Method 25
3.1.2 Transfer Function of SH waves 27
3.1.3 Dispersion Curves of Surface Waves 29
3.1.4 Inversion for Vs Profile 33
3.1.5 Joint Inversion of Phase Velocities and HVSR 35
3.2 Empirical Equations of Vs and Extrapolations of Vs30 36
3.2.1 Regression of Empirical Equations 36
3.2.2 Extrapolations of Vs30 36
Chapter 4 Characteristics of Microtremor and Applications 42
4.1 Characteristic Analysis of Microtremor 42
4.1.1 Time Domain - Particle Motion 42
4.1.2 Frequency Domain - HVSR 44
4.1.3 HVSR of Microtremor and S-Wave 48
4.2 Examinations of HVSR and the Joint Inversion Method 49
4.2.1 HVSR Inversion Method 49
4.2.2 Joint Inversion Method 51
Chapter 5 Site Classification of TSMIP Stations 69
5.1 Empirical Equations of Vs 70
5.1.1 Previous Equations 70
5.1.2 Equations of the Taipei Basin and the Ilan Area 71
5.2 Extrapolations of Vs30 73
5.2.1 Comparison of Extrapolations Using All DH Stations 73
5.2.2 Err% for DH Stations in Different Regions 75
5.2.3 Err% for DH Stations in Different Site Classes 75
5.2.4 An Application 76
5.3 Vs30 and Site Classification of the TSMIP Stations 77
Chapter 6 Vs Structures from Array Analysis 89
6.1 Geology of the Taipei Basin 89
6.2 Estimating Vs Profiles by the Joint Inversion 90
6.2.1 Phase velocity and HVSR 90
6.2.2 Vs Structure at Stations 93
6.3 Estimating 3D Velocity Profiles Using Only One Array 96
Chapter 7 Conclusions 117
References 121
Appendix A 130
Appendix B 138
參考文獻 Aki, K., Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bulletin of Earthquake Research Institute of Tokyo University, 35(3), 415-456, 1957.
Aki, K. and Richards, P. G., Quantitative Seismology: Theory and Methods, W. H. Freeman and Company, 1st ed., 932 pp., 1980.
Anderson, D. R., Sweeney, D. J., and Williams, T. A., Statistics for Business and Economics, 2nd edition, West Publishing Company, Taipei, 668 pp., 1984.
Anderson, J. G., Lee, Y., Zeng, Y., and Day, S., Control of strong motion by the upper 30 meters, Bulletin of the Seismological Society of America, 86(6), 1749-1759, 1996.
Arai, H. and Tokimatsu, K., S-wave velocity profiling by inversion of microtremor H/V spectrum, Bulletin of the Seismological Society of America, 94(1), 53-63, 2004.
Arai, H. and Tokimatsu, K., S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum, Bulletin of the Seismological Society of America, 95(5), 1766-1778, 2005.
Arai, H. and Tokimatsu, K., Three-dimensional Vs profiling using microtremors in Kushiro, Japan, Earthquake Engineering and Structure Dynamics, 37, 845-859, 2008.
Bang, E. S. and Kim, D. S., Evaluation shear wave velocity profile using SPT based uphole method, Soil Dynamics and Earthquake Engineering, 27(8), 741-758, 2007.
Bodin, P., Smith, K., Horton, S., and Hwang, H., Microtremor observations of deep sediment resonance in metropolitan Memphis, Tennessee, Engineering Geology, 62, 159-168, 2001.
Bodin, P. and Horton, S., Broadband microtremor observation of basin resonance in the Mississippi embayment, Central US, Geophysical Research Letters, 26(7), 903-906, 1999.
Bonilla, L. F., Steidl, J. H., Lindley, G. T., Tumarkin, A. G., and Archuleta R. J., Site Amplification in the San Fernando Valley, California: variability of site-effect estimation using the S-Wave, coda, and H/V methods, Bulletin of the Seismological Society of America, 87(3), 710-730, 1997.
Bonnefoy-Claudet, S., Cornou, C., Bard, P. Y., Cotton, F., Moczo, P., Kristek, J., and Fah, D., H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations, Geophysical Journal International, 167, 827-837, 2006.
Boore, D. M. and Joyner W. B., Site amplifications for generic rock sites, Bulletin of the Seismological Society of America, 87(2), 327-341, 1997.
Boore, D. M., A compendium of P- and S-wave velocities from surface-to-borehole logging: summary and reanalysis of previously published data and analysis of unpublished data, U.S. Geological Survey Open-File Report, 03-191, http://quake.usgs.gov/~boore, 2003.
Boore, D. M., Estimating Vs(30) (or NEHRP site classes) from shallow velocity models (depths < 30 m), Bulletin of the Seismological Society of America, 94(2), 591-597, 2004.
Boore, D. M. and Asten, M. W., Comparisons of shear-wave slowness in the Santa Clara Valley, California, using blind interpretations of data from invasive and noninvasive methods, Bulletin of the Seismological Society of America, 98(4), 1983-2003, 2008.
Building Seismic Safety Council (BSSC), NEHRP recommended provisions for seismic regulations for new buildings and other structures, 2000 Edition. Part 1: Provisions, prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency (Report FEMA 368) Washington, D.C., 2001.
Capon, J., High-resolution frequency-wavenumber spectrum analysis, Proceedings of the IEEE, 57(8), 1408-1418, 1969.
Chapman, M. C., Martin, J. R., Olgun, C. G., and Beale, J. N., Site response models for Charleston, South Carolina, and vicinity developed from shallow geotechnical investigations, Bulletin of the Seismological Society of America, 96(2), 467-489, 2006.
Chavez-Garcia, F. J., Sanchez, L. R., and Hatzfeld, D., Topographic site effect and HVSR. A comparison between observations and theory, Bulletin of the Seismological Society of America, 86(5), 1559-1573, 1996.
Chen, C. T., Using Stochastic Finite-Fault Modeling to Study the Site Effect in the Taipei Basin, Master Thesis, Institute of Geophysics, National Central University, Chung-Li, Taiwan, 109 pp., 2005. (In Chinese)
Chen, M. H., Wen, K. L., and Loh, C. H., A study of shear wave velocities for alluvium deposits in southwestern Taiwan, Journal of Chinese Institute of Civil and Hydraulic Engineering, 15(4), 667-677, 2003. (In Chinese)
Cheng, D. S., Wen, K. L., Kang, Y. V., and Chang, T. M., Investigation of velocity structures of seismic stations, Technique Reports of NCREE, NCREE-07-024, 2007. (In Chinese)
Chiang, H. J., Lin, C. M., Huang, Y. C., and Wen, K. L., Suspension PS-logging measurements at Institute of Earth Science, Academia Sinica, Report for Institute of Earth Science, Academia Sinica, 2005. (In Chinese)
Cornou, C., Ohrnberger, M., Boore D. M., Kudo, K., and Bard, P-Y., Derivation of structural models from ambient vibration array recordings: results from an international blind test, Third International Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France, 2007.
Di Giulio, G., Cornou, C., Ohrnberger, M., Wathelet, M., and Rovelli, A., Deriving wavefield characteristics and shear-velocity profiles from two-dimensional small-aperture arrays analysis of ambient vibrations in a small-size alluvial basin, Colfiorito, Italy, Bulletin of the Seismological Society of America, 96(5), 1915-1933, 2006.
Dobry, R., Borcherdt, R. D., Crouse, C. B., Idriss, I. M., Joyner, W. B., Martin, G. R., Power, M. S., Rinne, E. E., and Seed, R. B., New site coefficients and site classification system used in recent building seismic code provisions, Earthquake Spectra, 16(1), 41–67, 2000.
Dunkin, J. W., Computation of model solutions in layered, elastic media at high frequencies, Bulletin of the Seismological Society of America, 55(2), 335-358, 1965.
Dutta, U., Satoh, T., Kawase, H., Sato, T., Biswas, N., Martirosyan, A., and Dravinski, M., S-wave velocity structure of sediments in Anchorage, Alaska, estimated with array measurements of microtremors, Bulletin of the Seismological Society of America, 97(1B), 234-255, 2007.
Fäh, D., Kind, F., and Giardini, D., A theoretical investigation of average H/V ratios, Geophysical Journal International, 145, 535-549, 2001.
Fäh, D., Kind, F., and Giardini, D., Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects, Journal of Seismology, 7, 449-467, 2003.
Fäh, D., Stamm, G., and Havenith, H. B., Analysis of three-component ambient vibration array measurements, Geophysical Journal International, 172, 199-213, 2008.
García-Jerez, A., Navarro, M., Alcala, F. J., Luzon, F., Perez-Ruiz, J. A., Enomoto, T., Vidal, F., and Ocana, E., Shallow velocity structure using joint inversion of array and h/v spectral ratio of ambient noise: The case of Mula town (SE of Spain), Soil Dynamics and Earthquake Engineering, 27, 907-919, 2007.
Gilbert, F. and Backus, G., Propagator matrices in elastic wave and vibration problems, Geophysics, 31, 326-332, 1966.
Guillier, B., Chatelain, J. L., Hellel, M., Machane, D., Mezouer, N., Ben Salem, R., and Oubaiche E. H., Smooth bumps in H/V curves over a broad area from single-station ambient noise recordings are meaningful and reveal the importance of Q in array processing: The Boumerdes (Algeria) case, Geophysical Research Letters, 32, L24306, 2005.
Hair, J. F., Jr., William, C. B., Barry, J. B., Rolph, E. A., and Ronald, L. T., Multivariate Data Analysis, 6th edition, Pearson Education International, Upper Saddle River, NJ, 899 pp., 2006.
Hamilton, E., Shear wave velocity versus depth in marine sediments: a review, Geophysics, 41(5), 985-996, 1976.
Hasancebi, N. and Ulusay, R., Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments, Bulletin of Engineering Geology and Environment, 66, 203-213, 2007.
Haskell, N. A., The Dispersion of surface waves on multilayered media, Bulletin of the Seismological Society of America, 43(1), 17-34, 1953.
Haskell, N. A., Crustal reflection of plane SH waves, Journal of Geophysical Research, 65, 4147-4150, 1960.
Heisey, J. S., Stokoe, K. H. II., and Meyer, A. H., Moduli of pavement systems from spectral analysis of surface waves, Transportation Research Board, 852, 22–31, 1982.
Herrmann, R. B., SH-wave generation by dislocation surface – a numerical study, Bulletin of the Seismological Society of America, 69(1), 1-15, 1979.
Herrmann, R. B., Computer Programs in Seismology, Saint Louis University, 1985.
Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, 183 pp., 1975.
Holzer, T. L., Bennett, M. J., Noce, T. E., Padovani, A. C., and Tinsley III, J. C., Liquefaction hazard and shaking amplification maps of Alameda, Berkeley, Emeryville, Oakland and Piedmont, California: a digital database, U.S. Geological Survey Open-File Report, 02-296, 2002.
Holzer, T. L., Bennett, M. J., Noce, T. E., Padovani, A. C., and Tinsley III, J. C., Shear-wave velocity of surficial geologic sediments: statistical distributions and depth dependence, Earthquake Spectra, 21(1), 161-177, 2005.
Horike, M., Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas, Journal of Physics of the Earth, 33, 59–96, 1985.
Huang, H. C. and Tarng, C. R., Site characteristics of the Puli area, Taiwan, Terrestrial Atmospheric and Oceanic Sciences, 16(2), 467-485, 2005.
Huang, M. W., Wang, J. H., Hsieh, H. H., Wen, K. L., and Ma K. F., Frequency-dependent sites amplifications evaluated from well-logging data in central Taiwan, Geophysical Research Letters, 32, L21302, 2005.
Huang, M. W., Wang, J. H., Ma, K. F., Wang, C. Y., Hung, J. H., and Wen, K. L., Frequency-dependent site amplifications with f ≧ 0.01 Hz evaluated from velocity and density models in Central Taiwan, Bulletin of the Seismological Society of America, 97(2), 624-637, 2007.
Imai, T., P- and S-wave velocities of the ground in Japan, Proceedings of 6th International Conference on Soil Mechanics and Foundation Engineering, 2, 257-260, 1977.
Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., and Fukushima, Y., A new attenuation relation for strong ground motion in Japan based on recorded data, Bulletin of the Seismological Society of America, 96(3), 879-897, 2006.
Kawase, H., Satoh, T., Iwata, T., and Irikura, K., S-wave velocity structure in the San Fernando and Santa Monica areas, Proceedings of the 2nd International Symposium on the Effects of Surface Geology on Seismic Motion, 2, 733–740, 1998.
Kudo, K., Kanno, T., Okada, H., Ozel, O., Erdik, M., Sasatani, T., Higashi, S., Takahashi, M., and Yoshida, K., Site-specific issues for strong ground motions during the Kocaeli, Turkey, earthquake of 17 August 1999, as inferred from array observations of microtremors and aftershocks, Bulletin of the Seismological Society of America, 2002, 92(1), 448–465, 2002.
Kuo, C. H., Cheng, D. S., Hsieh H. H., Chang T. M., Chiang, H. J., Lin, C. M., and Wen K. L., Comparison of three different methods in investigating shallow shear-wave velocity structures in Ilan, Taiwan, Soil Dynamics and Earthquake Engineering, 29(1), 133-143, 2009.
Kuo, C. H., Lin, C. M., Wen, K. L., and Chang, T. M., Noise blind test, Proceedings of the 3rd International Symposium on The Effects of Surface Geology on Seismic Motion, G10, Grenoble, French, 2006.
Lee, C. T., Cheng, C. T., Liao, C. W., and Tsai, Y. B., Site classification of Taiwan free-field strong-motion stations, Bulletin of the Seismological Society of America, 91(5), 1283-1297, 2001.
Lee, C. T. and Tsai, B. R., Mapping Vs30 in Taiwan, Terrestrial Atmospheric and Oceanic Sciences, 19(6), 671-682, 2008.
Lee, S. H. H., Analysis of the multicollinearity of regression equations of shear wave velocities, Soils and Foundations, 32(1), 205-214, 1992.
Lermo, J. and Chavez-Garcia, F. J., Site effect evaluation using spectral ratios with only one station, Bulletin of the Seismological Society of America, 83(5), 1574–1594, 1993.
Liao, S. S. C. and Whitman R. V., Overburden correction factors for SPT in sand, Journal of Geotechnical Engineering, 112(3), 373-377, 1986.
Lin, C. M., Wen, K. L., Kuo, C. H., Chiang, H. J., and Son, L. T., Site characteristic analyses of microtremor in Hanoi region, Vietnam, Proceeding of the 2008 Taiwan-Japan Symposium on the Advancement of Urban Earthquake Hazard Mitigation Technology, 53-56, Taoyuan, Taiwan, 2008.
Lin, S. C., Using Microtremor Measurement to Study the Site Effect in the Taipei Basin, Master Thesis, Institute of Geophysics, National Central University, Chung-Li, Taiwan, 110 pp., 2005. (In Chinese)
Liu, H. P., Boore, D. M., Joyner, W. B., Oppenheimer, D. H., Warrick, R. E., Zhang, W., Hamilton J. C., and Brown L. T., Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles, Bulletin of the Seismological Society of America, 90(3), 666-678, 2000.
Louie J. N., Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bulletin of the Seismological Society of America, 91(2), 347-364, 2001.
Malagnini, L., Rovelli, A., Hough, S. E., and Seeber, L, Site amplification estimates in the Garigliano valley, central Italy, based on dense array measurements of ambient noise, Bulletin of the Seismological Society of America, 83, 1744–1755, 1993.
Maresca, R., Galluzzo, D., and Del Pezzo, E., H/V spectral ratios and array techniques applied to ambient noise recorded in the Colfiorito Basin, Central Italy, Bulletin of the Seismological Society of America, 96(2), 490-505, 2006.
Matsushima, T. and Okada, H., Determination of deep geological structures under urban areas using long-period microtremors, Butsuri Tansa, 43, 21–33, 1990.
Milne, J., Seismology, Kegan Paul, Trench, Trubner, & Co., London, 1st ed., 320 pp., 1898.
Moczo, P. and Kristek, J., FD code to generate noise synthetics, Sesame report D02.09, available on http://SESAME-FP5.obs.ujf-grenoble.fr, 2002.
Nakamura, Y., A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Quarterly Report of RTRI, 30(1), 25-33, 1989.
Nakamura, Y., Clear identification of fundamental idea of Nakamura’s technique and its applications, Proceedings of 12th World Conference on Earthquake Engineering, 2656, Auckland, New Zealand, 2000.
Nakamura, Y., Characteristics of H/V spectrum, NATO Advanced Research Workshop, Dubrovnik, Croatia, 2007.
Nazarian, S. and Stokoe, K. H. II., In situ shear wave velocities from spectral analysis of surface waves, Proceedings of 8th World Conference on Earthquake Engineering, 3, 31–38, San Francisco, 1984.
Ohori, M., Nobata, A., and Wakamatsu, K., A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays, Bulletin of the Seismological Society of America, 92(6), 2323-2332, 2002.
Ohsaki, Y. and Iwasaki, R., On dynamic shear moduli and Poisson’s ratio of soil deposits, Soils and Foundations, 13(4), 61?-73, 1973.
Ohta, Y. and Goto, N., Empirical shear wave velocity equations in terms of characteristic soil indexes, Earthquake Engineering and Structural Dynamics, 6, 167-187, 1978a.
Ohta, Y. and Goto, N., Shear wave velocity measurement during a standard penetration test, Earthquake Engineering and Structural Dynamics, 6, 43-50, 1978b.
Pancha, A., Anderson, J. G., Louie, J. N., and Pullammanappallil, S. K., Measurement of shallow shear wave velocities at a rock site using the ReMi technique, Soil Dynamics and Earthquake Engineering, 28, 522-535, 2008.
Parolai, S., Picozzi, M., Richwalski, S. M., and Milkereit, C., Joint inversion of phase velocity dispersion and H//V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes, Geophysical Research Letters, 32(1), L01303, 2005.
Picozzi, M., Parolai, S., and Richwalski, S. M., Joint inversion of H/V ratios and dispersion curves from seismic noise: Estimating the S-wave velocity of bedrock, Geophysical Research Letters, 32, L11308, 2005.
Picozzi, M. and Albarello, D., Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ration curves, Geophysical Journal International, 169, 189-200, 2007.
Pitilakis, K., Raptakis, D., Lontzetidis, K., Tika-vassilikou, T., and Jongmans, D., Geotechnical and geophysical description of Euro-Seistests, using field and laboratory tests, and moderate strong ground motions, Journal of Earthquake Engineering, 3(3), 381-409, 1999.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery B. P., Numerical Recipes in Fortran 77: The Art of Scientific Computing, Cambridge University Press, vol. 1, 2nd ed., 1008 pp., 1992.
Sato, T., Kawase, H., Matsui, M., and Kataoka, S., Array measurement of high frequency microtremors for underground structure estimation, Proceedings of 4th International Conference on Seismic Zonation, 2, 409–416, 1991.
Sato, T., Saita, J., and Nakamura, Y., Evaluation of the amplification characteristics of subsurface using microtremor and strong motion – the studies at Mexico City, Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
Satoh, T., Kawase, H., Iwata, T., Higashi, S., Sato, T., Irikura, K., and Huang, H. C., S-wave velocity structure of the Taichung Basin, Taiwan, estimated from array and sngle-station records of microtremors, Bulletin of the Seismological Society of America, 91(5), 1267-1282, 2001a.
Satoh, T., Kawase, H., and Matsushima, S., Estimation of S-wave velocity structures in and around the Sendai Basin, Japan, using array records of microtremors, Bulletin of the Seismological Society of America, 91(2), 206-218, 2001b.
Seed, H. B. and Idriss, I. M., Evaluation of liquefaction potential of sand deposits based on observations of performance in previous earthquakes, Proceedings of the Conference on In Situ Testing to Evaluate Liquefaction Susceptibility, ASCE, 81-544, 1981.
Shearer, P. M., Introduction to Seismology, Cambridge University Press, 1st ed., 260 pp., 1999.
Sokolov, V. Y., Loh, C. H., and Jean, W. Y., Application of horizontal-to-vertical (H/V) Fourier spectral ratio for analysis of site effect on rock (NEHRP-class B) sites in Taiwan, Soil Dynamics and Earthquake Engineering, 27, 314-323, 2007.
Sykora, D. E. and Stokoe, K. H. II, Correlations of in situ measurements in sands of shear wave velocity, soil characteristics and site conditions, Report GR 83-33, Civil Engineering Department, University of Texas at Austin, 484 pp., 1983.
Teng, L. S., Lee, C. T., Peng, C. H., Chen, W. F., and Chu, C. J., Origin and geological evolution of the Taipei Basin, Northern Taiwan, Western Pacific Earth Sciences, 1, 115-142, 2001.
Tsuboi, S., Saito, M., and Ishihara. Y., Verification of horizontal-to-vertical spectral-ratio technique for estimation of site response using borehole seismographs, Bulletin of the Seismological Society of America, 91(3), 499-501, 2001.
Wang, C. Y. and Herrmann, R. B., A numerical study of P-, SV-, and SH-wave generation in a plane layered medium, Bulletin of the Seismological Society of America, 70(4), 1015-1036, 1980.
Wang, C. Y., Lee, Y. H., Ger, M. L., and Chen, Y. L., Investigating subsurface structures and P- and S-wave velocities in the Taipei Basin, Terrestrial Atmospheric and Oceanic Sciences, 15(4), 609-627, 2004.
Wen, K. L., Fei, L. Y., Peng, H. Y., and Liu, C. C., Site effect analysis from the records of the Wuku downhole array, Terrestrial Atmospheric and Oceanic Sciences, 6, 285-298, 1995.
Wen, K. L. and Peng, H. Y., Site effect analysis in the Taipei Basin: results from TSMIP network data, Terrestrial Atmospheric and Oceanic Sciences, 9(4), 691-704, 1998.
Wen, K. L., Chang, T. M., Lin, C. M., and Chiang H. J., Identification of nonlinear site response using the H/V spectral ratio method, Terrestrial Atmospheric and Oceanic Sciences, 17(3), 533-546, 2006.
Wen, K. L., Lin, C. M., Chiang H. J., Kuo, C. H., Huang, Y. C., and Pu, H. C., Effect of surface geology on ground motions: the case of station TAP056 – Chutzuhu site, Terrestrial Atmospheric and Oceanic Sciences, 19(5), 451-462, 2008.
Williams, R. A., Odum, J. K., Stephenson, W. J., and Herrmann, R. B., Shallow P- and S-wave velocities and site resonances in the St. Louis region, Missouri-Illinois, Earthquake Spectra, 23(3), 711?726, 2007.
Woolery, E. W. and Street, R., 3D near-surface soil response from H/V ambient-noise ratios, Soil Dynamics and Earthquake Engineering, 22, 865-876, 2002.
指導教授 溫國樑(Kuo-Liang Wen) 審核日期 2009-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明