博碩士論文 956202007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.16.51.237
姓名 廖玲琬(Ling-Wan Liao)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 臺灣東部海嘯潛勢評估
(Evaluation on Tsunami Potential in Eastern Taiwan)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣位於歐亞大陸板塊及菲律賓海板塊碰撞帶,屬於太平洋地震帶的一部分,淺層強震紀錄中約五成分佈於東部外海,且根據歷史紀錄,自西元1771年起,臺灣東部曾有十四起海嘯事件的記載,因此臺灣東部海嘯的危害度分析,有其重要性及應用的價值。本研究在北緯21-26度,東經121-125度之區域內,每0.5度劃分為一個海嘯源發生區,共有70個海嘯源發生區,每次模擬在一個0.5 × 0.5度的中心,放置一個8 × 8公里,高10公尺的波高,以線性淺水波方程為波傳之控制方程,波傳範圍為北緯21-27度,東經119-125度,模擬時間共計120分鐘,海底地形精度為一分,並在臺灣東部設置8個虛擬驗潮站,模擬出理論到時與最大波高。由於海嘯波有線性疊加的特性,在此海嘯源區的設置,可視為虛擬地震中,地震斷層區域錯動的分量,對於真實地震海嘯的模擬,可依此海嘯源區做結合,依不同錯動分量的尺度加以線性結合。但地震破裂的方向性在此並無列入考量。藉由此模型之結果分析,歸納出由路徑效應引起的波線轉折現象:振幅集中於琉球島弧區域並沿著琉球島弧由東向西朝宜蘭平原彎曲、與那國島與綠島、蘭嶼之繞島效應、加瓜海脊之能量反射,其中琉球島弧及與那國島的雙重效應使得與那國島東方與八重山群島的其他島嶼之間的區域成為海嘯潛勢最高的區域。而海嘯的到時與最大振幅之分析中,顯示海嘯潛勢較高區域為琉球島弧及近岸地區海域,根據海嘯到時的計算,臺灣東部區域的海嘯傳遞,依據其海底地形可劃分為三區,北緯24.5度以北、琉球島弧區域及其以南區域,其平均波傳速率分別為8.1公里/分, 10.2公里/分及13.9公里/分。此平均波傳速率及振幅衰減式,可應用於未來氣象局建立之海嘯預警系統之初步判斷。本研究並藉由淺水波方程模型與布氏方程模型,驗證臺灣東部之海嘯模擬可忽略頻散現象,即線性淺水波模型在臺灣東部外海可做為海嘯估計之下限。
摘要(英) Historically, literature had shown that eastern Taiwan had been attacked by tsunamis at least 14 times since 1771. For the location of Taiwan as in the Circum-Pacific Seismic Belt, many large earthquakes occurred in and offshore Taiwan, especially in eastern Taiwan, with frequent events for the magnitude of 6 or larger. To examine the tsunami threat in eastern Taiwan, through numerical simulating, we assess the tsunami potential to help on the precaution against tsunami calamities. To model the possible tsunami occurred in eastern Taiwan, we divided the eastern offshore Taiwan into 70 different source regions of latitude of 21o to 26 o, and longitude of 121 o to 125 o to examine the tsunami propagation characteristics (path effects) from finite-difference method by solving linear shallow water wave equation in spherical coordinates. The source region has a dimension of 0.5 degree by 0.5 degree. We gave an area of 8km by 8km with 10m uplift for the tsunami source in the region, individually, to examine how the tsunami propagating toward Taiwan from each source region. A grid size of 2 km is utilized in the tsunami simulation with 1 minute high resolution bathymetry. By analyzing the maximum amplitudes and the arrival time for the assumed stations around the coastal of Taiwan, we select special cases those have significant effect toward Taiwan to discuss the path effects and bathymetry affections. We found that the most possible tsunami threat region in eastern Taiwan is Ilan. Ilan plain located close to the end of the Okinawa trough, tsunami waves tend to lead to Ilan by following the trough structure. The Gagua Ridge in eastern offshore Taiwan, actually, diverts the wave to prevent the tsunami threat from long distance. Considering the deep water depth in eastern Taiwan, we also try to discuss about the dispersion effect on tsunami propagation for deeper water events to the south of Ryukyu trench. The results show that the dispersion effect from the deep ocean is not significant for the tsunami modeling in eastern Taiwan. Our simulations also show that the tsunami speed in eastern Taiwan can be divided into three regions, north of latitude 24.5 o, the Ryukyu arc region, and the south region of the Ryukyu arc. The average tsunami speed in these three regions are:8.1km/min, 10.2km/min, and 13.9km/min, respectively. These values and the amplitude attenuation characters can be used for the future tsunami warning. The identified tsunami potential regions in offshore Taiwan could also be examined with the background seismicity and possible marine landslide to further investigate the possibility on the occurrence of the larger events (6 or larger) for the future studies. The overall survey on the tsunami potential in Taiwan region will toward the goal for future tsunami warning, together with recent developing earthquake warning system in Taiwan.
關鍵字(中) ★ 海嘯
★ 海嘯潛勢
★ 模擬海嘯
★ 臺灣東部
關鍵字(英) ★ eastern Taiwan
★ evaluation tsunami potential
★ tsunami simulation
論文目次 中文摘要 ………………………………………………………………… i
英文摘要 ………………………………………………………………… ii
致謝 ………………………………………………………………… iv
目錄 ………………………………………………………………… v
圖目錄 ………………………………………………………………… vii
表目錄 ………………………………………………………………… ix
第一章、 序論…………………………………………………………… 1
1.1 研究動機……………………………………………………… 1
1.2 研究背景……………………………………………………… 2
1.3 本文內容……………………………………………………… 3
第二章、 理論方法與數值模式………………………………………… 7
2.1 淺水波理論…………………………………………………… 7
2.2 海嘯之數值計算……………………………………………… 8
2.2.1 有限差分法…………………………………………………… 8
2.2.2 邊界條件……………………………………………………… 9
2.2.3 穩定條件……………………………………………………… 10
2.3 布氏方程……………………………………………………… 10
2.4 布氏方程之數值計算………………………………………… 13
2.4.1 預測-校正法…………………………………………………… 13
2.4.2 邊界條件……………………………………………………… 13
2.5 海底地形資料………………………………………………… 14
第三章、 頻散現象之影響……………………………………………… 19
3.1 頻散現象……………………………………………………… 19
3.2 頻散現象之數值模擬………………………………………… 21
3.3 臺灣東部頻散現象影響評估………………………………… 22
3.3.1 初始波高……………………………………………………… 22
3.3.2 頻散之影響分析……………………………………………… 22
第四章、 臺灣東部海嘯之數值模擬…………………………………… 29
4.1 計算模型及海嘯源區模型設置……………………………… 29
4.2 特殊路徑效應評估…………………………………………… 30
4.2.1 琉球島弧……………………………………………………… 30
4.2.2 繞島效應……………………………………………………… 30
4.2.3 加瓜海脊……………………………………………………… 31
4.2.4 宜蘭…………………………………………………………… 31
4.3 到時與最大振幅分析………………………………………… 32
4.4 海嘯危害度評估……………………………………………… 33
4.5 臺灣地區海嘯預警系統初探………………………………… 33
第五章、 海嘯案例模擬:模擬1771年八重山海嘯………………… 51
5.1 背景介紹……………………………………………………… 51
5.2 條件設置……………………………………………………… 51
5.3 方法流程……………………………………………………… 52
5.4 結果分析……………………………………………………… 53
5.4.1 石垣島東側斷層滑動………………………………………… 53
5.4.2 石垣島東南方斷層滑動……………………………………… 53
第六章、 討論與結論…………………………………………………… 66
6.1 討論…………………………………………………………… 66
6.2 結論…………………………………………………………… 68
參考文獻 ………………………………………………………………… 70
參考文獻 ﹝1﹞徐明同, 1981, 海嘯所引起之災害,中央氣象局氣象學報第二十七卷第一期,頁1-15
﹝2﹞Tsai, Y. B.,1985. “A study of disastrous earthquakes in Taiwan”, 1683–1895. Bull. Inst. Earth Sci. Academia Sinica, 5, pp. 1-44.
﹝3﹞Hwang, L.-S., D. Divoky, and A, Yuen, 1970. Amchitka tsunami study. Tetra Tech. Inc., Pasadena, Calif.Rep. TC-177, pp. 84.
﹝4﹞Hwang, L.-S., H. L. Butler, and D. Divoky, 1972a. “Tsunami model:generation and open-sea characteristics”. Bull. Seism. Soc. Am., 62, pp. 1579-1596.
﹝5﹞Hwang, L.-S., H. L. Butler, and D. Divoky, 1972b. “Tsunami generation and propagation.” 13th Int. Conf. Coastal Eng. July 10-14, Vancouver, B.C., pp. 397-400.
﹝6﹞Kanamori, H. and Anderson D. L., 1975. “Theoretical basis of some empirical relations in seismology.” Bull. Seismol. Soc. Am., 1975,65: pp. 1073-1095.
﹝7﹞Abe, K. and Kanamori, H.,1980. “Magnitudes of great shallow earthquakes from 1953 to 1977.” Tectonophysics, 62, pp. 191-203.
﹝8﹞Satake. K., 1987. “Inversion of tsunami waveforms for the estimation of a fault heterogeneity method and numerical experiments.” J. Phys. Earth., 35, pp. 241-254.
﹝9﹞Satake. K., 1989. “Inversion of tsunami waveforms for the estimation of heterogeneous fault motion of large submarine earthquakes:The 1968 Tokachi-oki and 1983 Japan Sea Earthquakes.” J. Geophys. Res., 94, pp. 5627-5636.
﹝10﹞Ma, K. F., K. Satake and H. Kanamori, 1991a. “The origin of the tsunami excited by the 1989 Loma Prieta earthquake-faulting or slumping.” Geophys. Res. Lett., 18, pp. 637-640.
﹝11﹞Ma, K. F., K. Satake and H. Kanamori, 1991b. “The tsunami excited by the 1906 San Francisco earthquake.” Bull. Seismol. Soc. Am., 81, pp. 1396-1397.
﹝12﹞Ma, K, F. and M. F. Lee, 1997. “Simulation of Historical Tsunamis in the Taiwan Region.” TAO, Vol.8 No.1, pp.13-30.
﹝13﹞Ramming, H. G. and Z. Kowalik, 1980. “Numerical Modeling of Marine Hydrodynamics.” Elsevier Science & Technology, New Tork, pp. 368.
﹝14﹞Peregrine, D. H., 1966. “Calculations of the development of an undular bores.” J. Fluid Mech., 25, 321-330.
﹝15﹞Nwogu, O., 1993. “Alternative form of the Boussinesq equations for nearshore wave propagation.” J. Waterway, Port, Coast. Ocean Engng., 119(6), pp. 618-638.
﹝16﹞Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R., 1995. “A fully nonlinear Boussinesq model for surface waves: Part 1. Highly nonlinear unsteady waves.” J. Fluid Mech. 294, pp. 71–92.
﹝17﹞Wei, G. and Kirby, J.T., 1995. “A time-dependent numerical code for the extended Boussinesq equations.” J. Waterw., Port, Coastal Ocean Eng. 121 5, pp. 251–261.
﹝18﹞Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T., Numerical Recipes : The Art of Scientific Computing., Cambridge University Press, 1986.
﹝19﹞Takahashi, R., 1942. “On seismic sea waves caused by deformation of the sea bottom.” Bull. Earthq. Res. Inst. Univ. Tokyo, 20, pp. 377-400. (in Japanese)
﹝20﹞Kajiura, K., 1963. “The leading wave of a tsunami.” Bull. Earthq. Res. Inst. Univ. Tokyo, 41, pp. 533-571.
﹝21﹞Satake. K., 1985. “The mechanism of the 1983 Japan sea earthquake as inferred from long-period surface waves and tsunami.” Phys. Earthq. Planet, Inter., 37, pp. 249-260.
﹝22﹞Satake. K., and Tanioka, Y., 1995. “Generation and Propagation characteristics of the 1993 Hokkaido Nansei-oki Earthquake Tsunamis.” Pure and Appl. Geophys., 144, pp.813-822.
﹝23﹞Philip L.-F. Liu, Tso-Ren Wu, 2004. “Waves generated by moving pressure disturbances in rectangular and trapezoidal channels.” J. Hydraulic Res., 42, pp.163-171.
﹝24﹞R.G. Dean, R.A. Dalrymple, 1991, Water Wave Mechanics for Engineers and Scientists.
﹝25﹞A.D. Craik, 2004, “The origins of water wave theory.” Annu. Rev. Fluid Mech. 36, pp. 1–28.
﹝26﹞Lo, S. C., M. P. Chen and J. C. Fan, 1997, “Slope stability and geotechnical properties of sediment off the Changyuan area, eastern Taiwan.” Marine Georesource and Geotechnology, 15, pp. 209-229.
﹝27﹞牧野清, 1968, 八重山的明和大津波.
﹝28﹞Hatori, 1988 T. Hatori, “Tsunami magnitudes and source areas along the Ryukyu Islands.” Zisin 41, pp. 541–547 (in Japanese with English abstract).
﹝29﹞Nakamura, 2006, “Source Fault Model of the 1771 Yaeyama tsunami, Southern Ryukyu Islands, Japan, inferred from numerical simulation.” Pure and Applied Geophysics, 163, pp. 41–54.
﹝30﹞Nakata, T. and Kawana, T. 1993, Historical and prehistoric large tsunamis in the Southern Ryukyu, Japan, In Tsunami: Progress in Prediction, Disaster Prevention and Warning (eds. Y. Tsuchita and N. Shuto)(Kluwer Academic Publishers, 1995)pp. 211–221.
﹝31﹞Kubo, A. and Fujutama, E., 2003, “Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes.” Earth Planet. Sci. Lett. 210, pp. 305-316.
﹝32﹞Nakamura, M., 2004, “Crustal deformation in the central and southern Ryukyu Arc estimated from GPS data.” Earth Planet. Sci. Lett. 217, pp. 389-398.
﹝33﹞Hamamoto, F., Sakurai, M., and Nagano, M., 1979, “Submarine geology off the Miyako and Yaeyama Islands.” Rep. Hydro. Ocean. Res, 14, pp. 1-38 (in Japanese with English abst.).
﹝34﹞Okada, Y. , 1985, “Surface deformation due to shear and tensile faults in a half-space.” Bull. Seismol. Soc. Am., 75, pp. 1135-1154.
﹝35﹞Ma, K. F., and M. Kikuchi, 1994.” Initial Investigation of the May 24, 1994 Hualien and June 5, 1994 Nanao Eatthquakes.” TAO, 5, pp. 611-623.
﹝36﹞Satake, K.,Tanioka, Y., 2003, “The July 1998 Papua New Guinea earthquake: Mechanism and quantification of unusual tsunami generation.” Pure and Applied Geophysics, 160, pp.2087-2118.
﹝37﹞P. Lynett, J. Borrero, P. L.-F. Liu, and C. E. Synolakis, 2003, “Field Survey and Numerical Simulations: A Review of the 1998 Papua New Guinea Tsunami.” Pure Appl. Geophys., 160, pp. 2119-2146.
﹝38﹞J. Horrillo, Z. Kowalik, Y. Shigihara, 2006, “Wave Dispersion Study in the Indian Ocean-Tsunami of December 26, 2004.” Marine Geodesy, 29, pp. 149-166.
指導教授 馬國鳳(Kuo-Fong Ma) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明