博碩士論文 88624015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:18.217.4.250
姓名 葉俊岑(Jing-Tsin Yie )  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用單站頻譜比法探討集集地震造成之土壤非線性反應
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 場址特性分析及最大加速度衰減模式校正
★ 臺灣中部地區強地動波形模擬★ 整合性應力波傳法評估場址頻率特性之研究
★ 以微地動量測探討埔里盆地之場址效應★ 利用接收函數法推估蘭陽平原淺層速度構造
★ 蘭陽平原場址效應及淺層S波速度構造★ 台北市信義區場址效應之研究
★ 探討不同地質區強震站之淺層S波速度構造★ 竹子湖強震站場址效應之探討
★ 震源破裂過程及地表強地動特性之陣列分析研究★ 利用微地動探討桃竹苗地區之場址效應
★ 中央氣象局強震網測站之地盤效應分析與應用★ 利用微地動量測探討台灣中部地區之場址效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究首先使用台灣羅東LSST陣列、花蓮SMART-2陣列以及日本Port Island井下陣列的強、弱震資料,以單站頻譜比法討論該地區非線性放大反應,並利用前人研究結果作為驗證,藉此評估單站頻譜比法進行土層非線性反應之分析之可行性。
在LSST和SMART-2的結果中,可推測非線性反應的發生原因除了PGA值大小,地盤堅硬程度也是一項重要因素。由雙站法得到之頻譜比壓抑放大現象在利用單站頻譜比法進行分析時也可以很清楚的看出。而Port Island井下陣列使用單站法的結果雖然和雙站法不完全相同,但亦能觀察到液化過程中頻譜比變化的情形。由此可知,利用單站頻譜比法來進行非線性反應的研究是可行的,而液化時是否造成土壤非線性的行為,亦可由單站頻譜比法的結果中得知。
由於液化區附近土壤極有可能發生非線性反應,故本研究亦根據液化地區附近的地震記錄,使用單站頻譜比法求出集集主、餘震之頻譜比值以及1998年前之弱震平均頻譜比,且利用強弱震頻譜比的相對變化率,判斷強震時發生非線性反應的程度與範圍,並與前述液化區之範圍進行比對,所得結論如下:
1. 根據各測站在3 ~ 20 Hz間平均相對頻譜比分布情形,發現非線性反應多發生於鬆軟沖積層地帶,而液化區周圍則更有高度非線性反應。大部分的線性放大區域都位於西部麓山帶地質區。台中盆地底下以礫石層為主,在本結果中亦無非線性作用發生。總括來看,3 ~ 20 Hz間發生的非線性範圍與程度和液化分布相關,與地質分區亦有關連。
2.餘震時非線性現象較明顯的的地區依舊以西部的鬆軟沖積層為主,非線性範圍及程度皆不如主震,多數測站還是呈線性放大。
3.我們計算3 ~ 20 Hz內非線性程度最大的頻帶的平均變化率,結果較能突顯各地區非線性的程度,更具有實際參考價值。
4.研究結果發現,某些地區由於位在沖積平原上,主震時造成高度非線性現象,但並未傳出液化災情;員林鎮、台中港、伸港鄉和斗南鎮等位於濱海平原地質區的液化區,皆有很強的非線性大放效應;而埔里盆地和南投市等發生液化的地區處於西部麓山帶,其非線性現象則較不明顯。顯示發生非線性反應的地區不表示當地土壤發生液化現象,但是土壤液化時應會造成土壤的非線性反應發生。當地震發生時,會造成土壤非線性效應或是液化應是取決於PGA值的大小和地層因素。
5.根據不同液化地區附近測站的頻譜比結果來看,土壤液化不一定會造成所有頻段的放大倍率降低,而只有某特定頻段的放大倍率產生變化,且各地區變化的頻段不盡相同。
摘要(英) On September 21, 1999, an earthquake with the magnitude of 7.3 on the Richter scale occurred in the central Taiwan. The surface rupture along the Chelungpu fault is about 100 km in length. The earthquake killed more than 2,500 people and completely destroyed more than 10,000 buildings, and left 100,000 people homeless. The Chi-chi earthquake not only directly caused heavy damages on the structure and huge human life loss near the epicenter area, but also induced the secondary damages to the buildings in the central Taiwan region. From the field surveys, many places, such as Yuanlin, Wufong, Nanto City and Puli, suffer considerable from the soil liquefaction. It implies that the nonlinear soil response should occur pervasively in the central Taiwan area.
The aim of this study is to identify the area have nonlinear soil response during the Chi-chi earthquake. The data we use include main shock, after shocks of the Chi-chi earthquake and the weak motion records before the Chi-chi earthquake. We use the horizontal-to-vertical (H/V) spectral ratio method to conduct the analysis in this study because of lacking a good referent rock site in the alluvial plain. From our results, we found the nonlinear soil response usually occurred in soft alluvial plain, especially at the site near liquefied area. Most linear amplification areas are observed in the western foothill and Taichung Basin. The range and degree of nonlinear soil response are highly related to the local geology.
Besides, we also use the data from three downhole accelerometer arrays to check the accuracy of nonlinear soil response that estimated from H/V spectral ratios. The results strongly suggest that we can use the H/V spectral ratio method to estimate the nonlinear site effect.
關鍵字(中) ★ 單站頻譜比法
★  集集地震
★  非線性
關鍵字(英) ★ Chi-chi earthquake
★  H/V spectral ratio method
★  nonlinear
★  site effect
論文目次 論文提要…………………………………………………………...i
誌 謝…………………………………………………………...ii
目 錄…………………………………………………………...iii
圖 目…………………………………………………………...v
表 目…………………………………………………………...x
第一章緒論 ………………………………………………………1
1.1研究動機與目的 …………………………………………1
1.2文獻回顧 …………………………………………………4
1.3本文內容 …………………………………………………7
第二章中部地區地質背景 ………………………………………8
2.1地質概況 ………………………………………………..8
2.2主要液化地區地質背景 ………………………………..11
2.2.1員林地區 ...……………………………………………11
2.2.2霧峰地區 ...……………………………………………15
2.2.3南投市與貓羅溪沿岸 .....……………………………..20
2.2.4埔里盆地 ...……………………………………………24
第三章研究原理與方法 …………………………………………27
3.1局部的場址非線性反應 ...…………………………...…..27
3.1.1大地工程方面 ...………………………………………27
3.1.2地震觀測方面 ...………………………………………29
3.2傅氏振幅譜 ...…………………………………………...31
3.3單站頻譜比法 ...………………………………………...32
3.3.1單站頻譜比法原理 ...………………………………..32
3.3.2資料處理步驟 ...……………………………………..33
第四章方法檢驗 …………….....…...……………………………37
4.1羅東LSST陣列 .....………………………………………37
4.2花蓮SMART-2陣列 .....………….………………………47
4.3日本神戶港Port Island井下陣列 .………………………58
4.4結果討論 ...……………………………………………...66
第五章資料分析結果與討論 ...………………………………...71
5.1觀測結果分析 ...………………………………………...75
5.2液化區附近測站之頻譜分析 ...………………………...75
5.3非線性定量分析 …………………………………………95
5.4土壤液化與非線性反應的關係 …………………………103
第六章結論 ………………………………………………………106
6.1單站頻譜比法檢驗結果 …………………………………106
6.2集集地震系列的非線性效應 ……………………………107
參考文獻…………………………………………………………...109
附錄一…………………………………………………………...115
附錄二…………………………………………………………...120
參考文獻 Aguirre, J. and Irikura, K. (1997) Nonlinearity, Liquefaction, and velocity variation of soft soil layers in Port Island, Kobe, during the Hyogo-ken Nanbu earthquake. Bull, Seism. Soc. Am. 87, 1244-1258.
Aki, K. (1988). Local site effects on strong motion., Earthquake Engineering & Soil Dynamics, GT Div/ASCE, Park city, Utah, June 27-30, 103-155
Aki, K. and Chin, B. H. (1992). Local site effects on weak and strong ground motion., Int. sym. On Earthq. Disaster Prevention, Mexico City, Mexico, Vol. I, 198-211.
*Astaneh, A. et al. (1989). Preliminary report on the seismological and engineering aspects of the October 17, 1989 Santa Cruz (Loma Prieta) earthquake, Report No.UCB/EERC-89/14, Earthquake Engineering Research Center, University of California at Berkeley, California, U.S.A.
Beresnev, I. A., Wen, K. L., and Yeh, Y. T. (1995a). Nonlinear soil amplification: Its corroboration in Taiwan, Bull, Seism. Soc. Am., 85, 496-515.
Beresnev, I. A., Wen, K. L., and Yeh, Y. T. (1995b). Seismological evidence for nonlinear plastic ground behavior during large earthquakes, Soil. Dyn. Earthquake Eng., 14, 103-114.
Bolt. B. A. (1993). Earthquakes. 218-219.
Boore, D. M., Seekins, L., and Joyner, W. B. (1989). Peak acceleration from the 17 October 1989 Loma Prieta earthquake, Seism. Res. Lett. 60, 151-166.
Borcherdt, R. D. (1990). Influence of local geology in the San Francisco Bay region, California, on ground motion generated by the Loma Prieta earthquake of October 17, 1989. Proc. Int. Symp. Safety and Urban Life and Facilities (Tokyo, Japan).
Chang, C. Y., Mok, C. M., Power, M. S., Tang, Y. K., Tang, H. T. and Stepp, J. C. (1990). Equivalent linear versus nonlinear ground response analyses at Lotung seismic experiment site. Proc. Of 4th U.S. National Conference on Earthquake Engineering, Palm Springs, California, Vol. 1, 327-336.
Chang, C. Y., Mok, C. M., Power, M. S., Tang, Y. K., Tang, H. T. and Stepp, J. C. (1991). Development of shear modulus reduction curves based on Lotung downhole ground motion data, Proc. 2nd Int. Conf. Recent Advances in Geotechnical Earthquake Eng. Soil Dyn., Paper No. 1.44, 111-118.
Chin, B. H. and Aki, K. (1991). Simultaneous determination of source, path and recording site effects on strong ground motion during the Loma Prieta earthquake-a preliminary result on pervasive non-linear site effect. Bull, Seism. Soc. Am. 81, 1859-1884.
Chiu, H. C., Yeh, Y. T., Ni, S. D., Lee, L., Liu, W. H., Wen, G. F. and Liu, C. C. (1994). A new strong-motion array in Taiwan:SMART-2. TAO, 5, 463-475.
Darragh, R. B. and Shakal, A. F. (1991a). The site response of two rock and soil station pairs to strong and weak ground motion. Proc. 4th Intl. Conf. Seismic Zonation, Vol. 3, 359-366.
Darragh, R. B. and Shakal, A. F. (1991b). The site response of two rock and soil station pairs to strong and weak ground motion, Bull. Seism. Soc. Am. 81, 1885-1899.
Development Bureau, Kobe City (1991). Report of the soil investigation and installment of strong motion accelerograph (in Japanese).
Duncan, J. M. and Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. ASCE, J. of the Soil Mech. And Foundations Division, 96, SM5, 1629-1651.
Esteva, L. (1977). Microzoning: models and reality. Proc. 6th World Congr. Earthquake Eng. (New Dehli).
Field, E. H. and Jacob, K. H., (1993). The theoretical response of sedimentary layers to ambient seismic noise. Geophysical Research Letters 20, 2925-2928.
Finn, W. D. Liam, Lee, K. W. and Martin, G. R. (1977). An effective stress model for liquefaction. ASCE, J. of the Soil Mech. And Foundations Division, 103, GT6, 517-533.
Gutenberg, B. (1957). Effects of ground on earthquake motion. Bull. Seism. Soc, Am. 47, 221-250.
Hardin, B. O. and Drnevich, V. P. (1972) Shear modulus and damping in soil: design equations and curves, J. Soil Mech. Foundations Div. ASCE, 12, 537-564.
Jarpe, S. P., Cramer, C. H., Tucker, B. E. and Shakal, A. F. (1988). A comparison of observation of ground response to weak and strong ground motion at Coalinga, California. Bull, Seism. Soc. Am. 78, 421-435.
Jarpe, S. P., Jutchings, L. J., Hauk, T. F. and Shakal, A. F. (1989). Selected strong- and weak-motion data from the Loma Prieta earthquake sequence. Bull, Seism. Soc. Am. 60, 167-176.
Lee, W. H. K., Wu, F. T. and Jacobsen (1976). A catalog of historical earthquake in China complied from recent Chinese Publications. Bull, Seism. Soc. Am. 66, 2003-2016.
Lermo, J. and Chavez-Garcia F. J. (1993). Site effect evaluation using spectral ratios with only one station, Bull, Seism. Soc. Am. 83, 1574-1594.
Mohammadioun, B. and Pecker, A. (1984). Low- frequency transfer of seismic energy by superficial soil deposits and soft rocks, Earth. Eng. Structure. Dyn., 12, 537-564.
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, QR of RTR1 30, 1, February.
Rogers, A. M., Borcherdt, R. D., Covington, P. A. and Pekins, D. M. (1984). A comparative ground response study near Los Angles using recordings of Nevada nuclear tests and the 1971 San Fernando earthquake. Bull, Seism. Soc. Am. 74, 1925-1949.
Rogers, A. M., Tinsley, J. C. and Borcherdt, R. D. (1985). Predicting relative ground response. In: J.I. Ziony (Editor), Evaluating Earthquake Hazards in the Los Angles region. US Geol. Surv. Prof. Pap. 1360, 221-248.
Sato, K., Kokusho, T., Matsumoto, M. and Yamada, E. (1996). Nonlinear sesmic response and soil property during strong motion. Special Issue of Soil and Foundations, Japan Geotech. Soc., 41-42, Jan.
Satoh, T., Horike, M., Takeuchi, Y., Uetake, T. and Suzuki, H. (1997). Nonlinear behavior of scoria soil sediments evaluated from borehole records in eastern Shizuoka prefecture, Japan. Earthquake Eng. Struct. Dyn. 26, 781-795.
Satoh, T., Sato, T. and Kawase, H. (1995). Nonlinear behavior of soil sediments identified by using borehole records observed at the Ashigara Valley, Japan. Bull, Seism. Soc. Am. 85, 1821-1834.
Seed, H. B., Murarka, R., Lysmer, J. and Idriss, I. M. (1976) Relationships of maximum acceleration, maximum velocity, distance from source, and local site conditions for moderately strong earthquakes. Bull, Seism. Soc. Am. 66, 1323-1342.
Steidl , J. H., Tumarkin, A. G. and Archleta, R. J. (1996). What is a reference site? Bull, Seism. Soc. Am. 86, 1733-1748.
Wen, K. L, Beresnev, I. A., and Yeh, Y. T. (1994). Nonlinear soil amplification inferred from downhole strong seismic motion data. Geophys. Res. Lett., 21, 2625-2628.
Wen, K. L., Beresnev, I. A. and Yeh, Y. T. (1995). Investigation of non-linear site amplication at two downhole strong ground motion arrays in Taiwan. Earth. Eng. Structure. Dyn., 24, 313-324.
Wen, K. L., Peng, H. Y. and Tsai, Y. B. (2001). Why 1 g was recorded at TCU129 site during the 1999 Chi-Chi, Taiwan earthquake? Bull, Seism. Soc. Am. Chi-Chi Earthquake Special Issue.
Yu, G., Anderson, J. G. and Siddharthan, R. (1993). On the characteristics of nonlinear soil response. Bull, Seism. Soc. Am. 83, 218-244.
亞新工程顧問公司(2000a)土壤液化評估與處理對策研擬,員林,89年4月。
亞新工程顧問公司(2000b)南投、霧峰地區土壤液化調查研究,89年2月。
何春蓀(1986)台灣地質概論,台灣地質圖說明書。經濟部中央地質調查所。
吳偉特(1979)台灣地區砂性土壤液化潛能之初步分析。土木水利,第六卷第二期。
辛在勤(1993)台灣地區強地動觀測計畫,台灣地區強地動觀測計畫研討會論文摘要,1-10。
李健平(1998)利用井下陣列強地動資料研究土壤非線性反應。國立中央大學碩士論文。

林炳森、謝基政(2000)921集集大地震南投市液化初步調查報告。行政院國家科學委員會。
林啟文、張徽正、盧詩丁、石同生、黃文正(2000)台灣活動斷層概論,五十萬分之一台灣活動斷層分布圖說明書,第二版。經濟部中央地質調查所特刊。
林朝棨(1957)台灣地形。台灣省通誌稿卷一,土地誌,地理篇。
徐明同(1983)明清時代破壞性大地震規模及震度之評估。中央氣象局氣象學報第29卷第4期,1-18。
國家地震工程研究中心(1999)921集集大地震大地工程震災調查報告。
溫國樑(1988)羅東地區之強地動特性。國立中央大學博士論文。

溫國樑、葉永田、劉忠智(1986)羅東計畫之觀測系統及資料處理。中央研究院地球科學所報告ASIES-CR8602。
黃蕙珠(1994)峽谷地形與層狀構造對地震動之效應。國立中央大學博士論文。

經濟部中央地質調查所(1984)台灣坡地社區工程地質調查與探勘報告。
經濟部中央地質調查所(1999)921地震地質鑽探報告報告。
褚炳麟、張益銘、陳冠閔、徐松圻、張瑞銘(2000)921地震霧峰、太平地區液化及下陷調查分析。地工技術77期,19-28。
寬益工程有限公司(2000)國立台灣大學地質鑽探調查暨液化分析工程成果報告書。
鄧屬予(1997)台灣的沉積岩。經濟部中央地質調查所,45-50。
鄭世楠、葉永田(1989)西元1604年至1988年台灣地區地震目錄。中央研究院地球科學研究所。
顏月珠(1980)商用統計學。三民書局。
蘇鼎鈞、王天佑(2000)大區域土壤液化評估與處理對策研究。港灣工程耐震安全評估哉與災害防治研討會論文集,4-1~4-24。
蘇鼎鈞、王劍虹(2000)員林地區集集大地震土壤液化評估案例探討。地工技術,第81期,57~68。
指導教授 溫國樑(Kuo-Liang Wen) 審核日期 2001-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明