參考文獻 |
(1) 王永明,「以微分模式探求多相複合材料之力學性質」,碩士論文,國立成功大學土木系,台南 (1982)。
(2) 田永銘、吳柏林、朱正安,「高放射性廢料地質處置工程障壁系統與緩衝材料之熱傳導與壓實性質」,陸軍官校八十一週年校慶研討會,高雄 (2005)。
(3) 田永銘、吳柏林、莊文壽、張瑟稀,「碎石-皂土緩衝材料之壓實性質」,台灣公共工程學刊(修改中) (2005)。
(4) 田永銘、吳柏林,「壓實皂土塊體之無摩擦力壓縮曲線」,材料科學與工程(送審中)(2005)。
(5) 田永銘、吳柏林、黃慈君、朱正安、莊文壽,「溫度及鹽水濃度對壓實膨潤土回脹性質之影響」,台電工程月刊 (已接受) (2005)。
(6) 田永銘、黃偉慶、陳志霖、吳柏林,「碎石-皂土混合物之壓實行為」,2004岩盤工程研討會,淡水,第670~677頁(2004)。
(7) 田永銘、吳柏林、莊文壽、張瑟稀,「碎石-皂土混合物之壓實性質」,第十屆大地工程研討會,三峽(2003)。
(8) 田永銘、黃偉慶、黃慈君、朱正安、吳柏林,「溫度及鹽水濃度對壓實膨潤土回脹性質之影響」,第十屆大地工程研討會,三峽(2003)。
(9) 田永銘、黃偉慶、吳柏林、王欣婷,「緩衝材料壓實技術與其特性初步探討」,行政院原子能委員會委託研究計畫研究報告 (2003)。(NS910898)
(10) 田永銘、吳柏林、朱正安,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(II)」,行政院原子能委員會委託研究計畫研究報告 (2002)。(912001INER020)
(11) 田永銘、黃偉慶、陳志霖、吳柏林,「皂土—碎石複合材料之應力應變行為」,2002岩盤工程研討會,新竹,第753~762頁(2002)。
(12) 田永銘、黃偉慶、吳柏林,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(Ⅰ)」,行政院原子能委員會委託研究計畫研究報告 (2001)。(902001INER006)
(13) 台灣電力公司,「我國用過核燃料長程處置全程工作規劃書(2000年版)」(2000)。
(14) 吳志良,「以微分模式研究複合材料以黏彈力學性質」,碩士論文,國立成功大學土木系,台南 (1980)。
(15) 邱太銘,「放射性廢棄物管理」,財團法人中興工程科技研究發展基金會,台北(2002)。
(16) 柯義聰,「顆粒加強複合材料之彈性係數與熱膨脹係數研究」,碩士論文,國立成功大學土木系,台南 (1977)。
(17) 施清芳,「美國用過核燃料高放射性廢料最終處置測試場址現況」,核研季刊,第13期 (1999)。
(18) 核燃料サイクル開発機構,「高レベル放射性廃棄物の地層処分技術に関する研究開発 - 平成15年度報告」,JNC TN1400 2004-007 (2004)。
(19) 郭明峰,「皂土-碎石混合物之壓實性質」,碩士論文,國立中央大學土木系,中壢 (2004)。
(20) 陳文泉,「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木系,中壢 (2004)。
(21) 陳文泉、黃偉慶,「深地層處置緩衝材料熱-水力-機械-化學耦合作用探討」,核研季刊,第四十二期,第38~48頁(2002)。
(22) 陳志霖,「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木系,中壢 (2000)。
(23) 陳邦富,「顆粒加強複合材料之降伏與在均向應力下之塑性變形」,碩士論文,國立成功大學土木系,台南 (1981)。
(24) 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第44~54頁(2000)。
(25) 莊文壽,「Nagra與瑞士的放射性廢料最終處置計畫」,行政院原子能委員會核能研究所對內報告,龍潭 (1999)。
(26) 楊尊忠、許秀真、紀立民、繆延武,「用過核燃料最終處置場資料彙整研究」,行政院原子能委員會核能研究所研究報告INER-2606,龍潭 (2003)。
(27) 蔡昭明等,「放射性廢料辭彙」,行政院原子能委員會放射性物料管理局,台北 (1996)。
(28) 蔡昭明等。「放射性廢料安全管制報告書」,放射性物料管理處,台北(1994)。
(29) 譚建國,「以微分模式研究複合材料之力學性質」,行政院國家科學委員會研究報告,NSC 69-0201-E006a-07 (1980)。
(30) 譚建國、顏崇斌,「以微分模式探求纖維加強複合材料之熱彈係數」,中國工程學刊,第五卷,第三期(1982)。
(31) 譚建國、王永明,「多相複合材料之微分模式I整體彈性係數」,中國工程學刊,第六卷,第二期(1983)。
(32) 魏華洲、陳紹舟,「核電廠除役廢料分類及特性探討」,核研季刊,第41期 (2001)。
(33) Aboudi, J., Mechanics of Composite Materials, Elsevier, Amsterdam (1991).
(34) Aydm, I., Briscoe, B., Sanliturk, K. Y., “The internal form of compacted ceramic components : a comparison of a finite element modeling with experiment,” Powder Technology, Vol. 89, pp. 239-254 (1996).
(35) Bhattacharyya, A., “Plasticity of isotropic composites with randomly oriented and packeted inclusions,” International Journal of Plasticity, Vol. 10, No. 5, pp. 553-578 (1994).
(36) Bonnefoy, V., Doremus, P., and Puente, G., “Investigations on friction behaviour of treated and coated tools with poorly lubricated powder mixes,” Powder Metallurgy, Vol. 46, No. 3, pp. 224-228 (2003).
(37) Bonnenfant, D., Mazerolle, F., Suquet, P., “Compaction of powders containing hard inclusions : experiments and micromechanical modeling,” Mechanics of Materials, Vol. 29, pp. 93-109 (1998).
(38) Boonsinsuk, P., Pulles, B. C., Kjartanson, B. H., and Dixon, D. A., “Prediction of compactive effort for a bentonite-sand mixture,” 44th Canadian Geotechnical Conference Volume 2, Alberta, Canada, pp. 64.1-64.12 (1991).
(39) Borgesson, L., “Water flow and swelling pressure in non-saturated bentonite-based clay barrier,” Engineering Geology, Vol.21, pp. 229-237 (1985).
(40) Briscoe, B. J., Evans, P. D., “Wall friction in the compaction of agglomerated ceramic powders,” Powder Technology, Vol.65, pp.7-20 (1991).
(41) Briscoe, B. J., Rough, S. L., “The effects of wall friction in powder compaction,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 137, pp. 103-116 (1998).
(42) Briscoe, B. J., Rough, S. L., “The effects of wall friction on the ejection of pressed ceramic parts,” Powder Technology, Vol.99, pp. 228-233 (1998).
(43) Chapman, N. A., McKinley, I. G.,Hill, M. D., The Geological Disposal of Nuclear Waste, John Wiley & Sons, U. K. (1987).
(44) Christensen, R. M., Mechanics of Composite Materials, John-Wiley & Sons, New York (1979).
(45) Christensen, R. M., “A critical evaluation for a class of micro- mechanics models,” J. Mech. Phys. Solids, Vol. 38, No. 3, pp. 379-404 (1990).
(46) Clyens, S., “A variable geometry die for reducing compact ejection forces,” Int. J. Mech. Sci., Vol. 19, pp. 285-293 (1977).
(47) Denny, P. J., “Compaction equations: a comparison of the Heckel and Kawakita equations,” Powder Technology, Vol. 127, pp. 162-172 (2002).
(48) Eduljee, R. F., McCullough, R. L., Gillespie, J. W., “The influsion geometry on the elastic properties of discontinuous fiber composites,” Ploymer Engineering and Science, Vol. 34, No. 4, pp. 352-360 (1994).
(49) Eroshkin, O., Tsukrov, I., “On the micromechanical modeling of particulate composites with inclusions of various shapes,” International Journal of Solids and Structures, Vol. 42, pp. 409-427 (2005).
(50) Figliola, R. S., Beasley, D. E., Theory and Design for Mechanical Measurements, John Wiley & Sons, New York (1995).
(51) Giordano, S., “Differential schemes for the elastic characterization of dispersions of randomly oriented ellipsoids,” European Journal of Mechanics A/ Solids, Vol. 22, pp. 885-902 (2003).
(52) Graham, J., Oswell, J. M., Gray, M. N., “The effective stress concept in saturated sand-clay buffer,” Canadian Geotechnical Journal, Vol. 29, pp. 1033-1043 (1992).
(53) Grindrod, P., Peletier, M., Takase, H., “Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids,” Engineering Geology, Vol. 54, pp.159-165 (1999).
(54) Guyoncourt, D. M. M., Tweed, J. H., Gough, A., Dawson, J., and Pater, L., “Constitutive data and friction measurements of powders using instrumented die,” Powder Metallurgy, Vol. 44, pp.25-33 (2001).
(55) Hashin, H., “Analysis of composite materials–A Survey,” Journal of Applied Mechanics. Vol. 50, pp.481-505 (1983).
(56) Hsieh, C. L., Tuan, W. H., Wu, T. T., “Elastic behavior of a model two-phase material,” Journal of the European Ceramic Society, Vol. 24, pp. 3789-3793 (2004).
(57) Hsieh, C. L., Tuan, W. H., “Elastic properties of cermic-metal particulate composites,” Materials Science and Engineering A, Vol. 393, pp. 133-139 (2005).
(58) Japan Nuclear Cycle Development Institute, Repository Design and Engineering Technology, JNC Supporting Report 2, Japan (1999).
(59) Johannesson, L. E., Börgesson, L., Sanden, T., Compaction of Bentonite Blocks – Development of Technique for Industrial Production of Blocks which are Manageable by Man, SKB technical report TR 95-19, Swedish (1995).
(60) Johannesson, L. E., Börgesson, L., Compaction of Bentonite Blocks – Development of Techniques for Production of Blocks with Different Shapes and Sizes, SKB technical report R 99-12, Swedish (1998).
(61) Johannesson, L. E., Compaction of Full Size Blocks of Bentonite for the KBS-3 Concept – Initial Tests for the Evaluating the Technique, SKB technical report R 99-66, Swedish (1999).
(62) Johannesson, L. E., Nord, S., Pusch, R., Sjöblom, R., Isostatic Compaction of Beaker Shaped Bentonite Blocks on the Scale 1:4, SKB technical report TR 00-14, Swedish (2000).
(63) Jones, R. M., Mechanics of Composite Materials, Scripta Book Company, Washington, D.C. (1975).
(64) Kara, A., Tobyn, M. J., Stevens, R., “An application for zirconia as a pharmaceutical die set,” Journal of the European Ceramic Society, Vol. 24, pp. 3091-3101 (2004).
(65) Khambekar, J., Model for Compaction and Ejection of Powder Metal Parts, Thesis of Worcester Polytechnic Institute in Mechanical Engineering (2003).
(66) Kim, K. T., Lee, H. T., “Effect of friction between powder and a mandrel on densification of iron powder during cold isostatic pressing,” Int. J. Mech. Sci., Vol. 40, No. 6, pp. 507-519 (1998).
(67) Kishino, Y, Proceedings of the 4th International Conference on Micromechanics of Granular Media – Powders and Grains 2001, A. A. Balkema, Netherlands (2001).
(68) Klemm, U., Sobek, D., Schone, B., Stockmann, J., “Friction measurements during dry compaction of silicon carbide,” Journal of the European Ceramic Society, Vol. 17, pp. 141-145 (1997).
(69) Koczak, M. J., McGraw, J. F., “A laboratory/production comparison of powder compacting and ejection response,” The International Journal of powder Metallurgy & Powder Technology, Vol. 16, No. 1, pp. 37-54 (1980).
(70) Kolaska, H., Schulz, P., Beiss, P., Ernst, E., “Investigations on die compaction,” Powder Metallurgy International, Vol. 25, No. 1, pp. 30-35 (1993).
(71) Komine, H., Ogata, N., “Experimental study on swelling characteristics of sand-bentonite mixture for nuclear waste disposal,” Soils and Foundations, Vol. 39, pp. 83-97 (1999).
(72) Kozaki, T., Sato, Y., Nakajima, M., Kato, H., Sato, S., and Ohashi, H., “Effect of particle size on the diffusion behavior of some radionuclides in compacted bentonite,” Journal of Nuclear materials, Vol. 270, pp 265-272 (1999).
(73) Krauskopf, K. B., Radioactive Waste Disposal and Geology, Chapman and Hall, U. K. (1988).
(74) Laws, N., McLaughlin, R., “The effect of fibre length on the overall moduli of composite materials,” J. Mech. Phys. Solids, Vol. 27, pp. 1-13 (1979).
(75) Lee, B. J., Mear, M. E., “Effect of inclusion shape on the stiffness of nonlinear two-phase composites,” J. Mech. Phys. Solids, Vol. 39, No. 5, pp. 627-649 (1991).
(76) Lefebvre, L. P., Mongeon, P. E., “Effect of coatings on ejection characteristics of iron powder compacts,” Powder Metallurgy, Vol. 46, No. 1, pp. 43-48 (2003).
(77) Li, F., Mechanical Behavior of Powders : Tester Design, Load-response Measurement and Constitutive Modeling, Thesis in Agicultural and Biological Engineering of Pennsylvania State University, U.S. (1999).
(78) Li, Y., Liu, H., Rockabrand, A., “Wall friction and lubrication during compaction of coal logs,” Powder Technology, Vol. 87, pp 259-267 (1996).
(79) Macleod, H. M., Marshall, K., “The Determination of density distribution in ceramic compacts using autoradiography,” Powder Technology, Vol. 16, pp. 107-122 (1977).
(80) Marcial, D., Delage, P., Cui, Y. J., “On the high stress compression of bentonites,” Canadian Geotechnical Journal, Vol. 39, pp. 812-820 (2002).
(81) Markov, K., Preziosi, L., Heterogeneous Media – Micromechanics Modeling Methods and Simulations, Birkhauser, Boston (2000).
(82) Mclaughlin, R., “A study of the differential scheme for composite materials,” International Journal of Engineering Science. Vol. 15, pp.237-244 (1977).
(83) Mitchell, J. K., Fundamentals of Soil Behavior, John Wiley & Sons, New York (1993).
(84) Mosbah, P., Bouvard, D., Ouedraogo, E., and Stutz, P., “Experimental techniques for analysis of die pressing and ejection of metal powder,” Powder Metallurgy, Vol.40, pp.269-277 (1997).
(85) Neederman, R. M., Statics and Kinematics of Granular Materials, Cambridge University Press, U. K. (1992).
(86) Nemat-Nasser, S., Hori, M., Micro - Mechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam (1993).
(87) Norris, A. N., “A differential scheme for the effective moduli of composites,” Mechanics of Materials, Vol. 4, pp. 1-16 (1985).
(88) NEA, Engineered Barrier Systems and the Safety of Deep Geological Repositories, OECD Nuclear Energy Agency, France (2003).
(89) Omine, K., Ochiai, H., and Yoshida, N., “Estimation of in-situ strength of cement-treated soils based on a two-phase mixture model,” Soils and foundations, Vol. 38, No. 4, pp.17-29 (1998).
(90) Oscarson, D. W., Dixon, D. A., Gray, M. N., “Swelling capacity and permeability of an unprocessed and a processed bentonitic clay,” Engineering Geology, Vol. 28, pp.281-289 (1990).
(91) Owen, A. J., Koller, I., “A note on the Young’s modulus of isotropic two-component materials,” Polymer, Vol. 37, No. 3, pp.527-530 (1996).
(92) Ozkan, N., Briscoe, B. J., “Characterization of die-press green compacts,” Journal of the European Ceramic Society, Vol. 17, pp. 697-711 (1997).
(93) Paramanand, Ramakrishnan, P., “Effect of powder characteristics on compaction parameters and ejection pressure of compacts,” Powder Metallurgy, Vol. 27, No. 3, pp. 163-168 (1984).
(94) Pusch, R., Waste Disposal in Rock, Elsevier, Netherlands (1994).
(95) Pusch, R., The Buffer and Backfill Handbook Part 1 : Definitions, Basic Relationships, and Laboratory Methods, SKB technical report TR 02-20, Swedish (2002).
(96) Pusch, R., The Buffer and Backfill Handbook Part 2 : Materials and Techniques, SKB technical report TR 02-12, Swedish (2002).
(97) Pusch, R., The Buffer and Backfill Handbook Part 3 : Models for Calculation of Processes and Behaviour, SKB technical report TR 03-07, Swedish (2003).
(98) Qiu, Y. P., Weng, G. J., “The influence of inclusion shape on the overall elastoplastic behavior of a two-phase isotropic composite,” Int. J. Solids Structures, Vol. 27, No. 12, pp. 1537-1550 (1991).
(99) Ramberger, R., and Burger, A., “On the application of the Heckel and Kawakita equations to Powder Compaction,” Powder Techonlogy, Vol. 43, pp. 1-9 (1985).
(100) Roure, S., Bouvard, D., Doremus, P., Pavier, E., “Analysis of die compaction of tungsten carbide and cobalt powder mixtures,” Powder Metallurgy, Vol. 42, pp. 164-170 (1999).
(101) Rowe, R. K., Quigley, R. M., Booker, J. R., Clayey Barrier Systems for Waste Disposal Facilities, E & FN SPON, London (1995).
(102) Smellie, J., Wyoming Bentonites : Evidence from the Geological Record to Evaluate the Suitability of Bentonite as a Buffer Material during the Long-term Underground Containment of Radioactive Wastes, SKB technical report TR 01-26, Swedish (2001).
(103) Stanley-Wood, N. G., Enlargement and Compaction of Particulate Solids, Butterworths, U.K. (1983).
(104) Tandon, G. P., Weng, G. J., “The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composite,” Polymer Composites, Vol. 5, No. 4, pp. 327-333 (1984).
(105) Tarn, J.-Q., “Thermoelastic moduli of composites by the differential scheme,” Proc. Natl. Sci. Counc. ROC, Vol. 3, No. 1, pp. 100-105 (1979).
(106) Tarn, J.-Q., Wang, Y. M., “A differential scheme for multi phase composite,” Proc. Int. Symp. Eng. Sci. and Mechanics, NCKU/AAS, Taiwan, pp. 1179-1198 (1981).
(107) Tien, Y. M., Wu, P. L., Chu, C. A., “Thermal Conductivity and Compaction Characteristics of Bentonite-Base Buffer Materials,” 2005 Taiwan Atomic Energy Fourm (TAEF), Longtan, Taiwan (2005).
(108) Tien, Y. M., Wu, P. L., Kuo, M. F., and C. A. Chu, “Wall Friction Measurement and Compaction Characteristics of Bentonite Powders,” submitted to Powder Technology (2005).
(109) Tien, Y. M., Wu, P. L., Kuo, M. F., “Compaction Properties of Crushed Rock - Bentonite Mixture,” submitted to Chinese Journal of Geotechnical Engineering (2005).
(110) Tien, Y. M., Wu, P. L., Chuang, W. S., and Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Applied Clay Science, Vol. 26, pp. 489-498 (2004).
(111) Tien, Y. M., Wu, P. L., Chuang, W. S., “The Friction-Free Compressibility Curve of Bentonite Block,” 2nd International Meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Tours, France (2004).
(112) Tien, Y. M., Wu, P. L., and Kuo, M. F., “The measuring method for wall friction during bentonite block compaction and ejection,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, ROC, pp. 187-194 (2004).
(113) Tien, Y. M., Wu, P. L., Chuang, W. S., Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Reims, France (2002).
(114) Turner, C. D., Ashby, M. F., “The cold isostatic pressing of composite powders – I. Experimental investigations using model powders,” Acta. Mater., Vol. 44, No. 11, pp. 4521-4530 (1996).
(115) Ward, M., Billington, J. C., “Effect of zinc stearate on apparent density, mixing, and compaction/ejection of iron powder compacts,” Powder Metallurgy, Vol. 22, No. 4, pp. 201-208 (1979).
(116) Wardrop, W. L & Associates Ltd, Buffer and Backfilling Systems for a Nuclear Fuel Waste Disposal Vault, AECL technical record TR-341, Canada (1985).
(117) Wiebe, B., Graham, J., Tang, G. X., Dixon, D., “Influence of pressure, saturation, and temperature on the behaviour of unsaturated sand-bentonite,” Canadian Geotechnical journal, Vol. 35, pp. 194-205 (1998).
(118) Wikman, B., Solimannezhad, N., Larsson, R., Oldenburg, M., Haggblad, H.-A., “Wall friction coefficient estimation through modeling of powder die pressing experiment,” Powder Metallurgy, Vol. 43, pp. 132-138 (2000).
(119) Willis, J. R., “The overall elastic response of composite materials,” Transactions of the ASME, Vol. 50, pp. 1202-1209 (1983).
(120) Willis, J. R., “On methods for bounding the overall properties of nonlinear composites,” J. Mech. Phys. Solids, Vol. 39, No. 1, pp. 73-86 (1991).
(121) Wu, L.-Z., Meng, S.-G., Du, S.-Y., “The overall response of composite materials with inclusions,” Int. J. Solids Structures, Vol. 34, No. 23, pp. 3021-3039 (1997).
(122) Wu, T. T., “On the parametrization of the elastic moduli of two-phase materials,” Journal of Applied Mechanics, Vol. 32, pp. 211-214.
(123) Wu, T. T., “The effect of inclusion shape on the elastic moduli of a two-phase material,” Int. J. Solids Structures, Vol. 2, pp. 1-8 (1966).
(124) Yong, R. N., Boonsinsuk, P., Wong, G., “Formulation of backfill material for nuclear fuel waste disposal valut,” Canadian Geotechnical Journal, Vol.23, pp. 216-228 (1986).
(125) Zavaliangos, A., Laptev, A., “The densification of powder mixtures containing soft and hard components under static and cyclic pressure,” Acta Mater., Vol. 48, pp. 2565-2570 (2000). |