博碩士論文 88322013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.191.93.18
姓名 吳柏林(Po-Lin Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 放射性廢料處置場中砂-皂土混合緩衝材料之壓實性質
(Compaction properties of sand-bentonite buffer materials in nuclear waste disposal concept)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高放性廢料處置之緩衝材料係由皂土或碎石(矽砂)-皂土混合材料構成。由於緩衝材料塊體之品質對於工程障壁之成效影響相當大,故壓製品質穩定之緩衝材料塊體為重要之課題。由於單軸壓實法壓製緩衝材料塊體具有成本低、省時及形狀精確之優點,故目前各國主要以單軸壓實法壓製緩衝材料。但由皂土壓製為高密度塊體過程中材料與模具間會產生壁面摩擦力,單純的施加壓實應力與密度之關係並無法真正表現粉體之壓實特性。
本研究以壁面摩擦力量測試驗討論壁面摩擦力及脫模力與壓實行為之關係。本研究首先改良傳統壁面摩擦力量測方法,並提出無壁面摩擦力壓縮曲線之概念,發展出以壓實應力平均法(包含積分平均法、幾何平均法及算術平均法)及長徑比外插法求取無壁面摩擦力壓縮曲線之方法。進而根據壁面摩擦力分佈理論推求最大脫模力與壁面摩擦力之關係,有效預測最大脫模力及脫模曲線之行為。
最後本研究依據微觀力學之觀念,建立一套碎石-皂土混合物壓縮曲線預測方法。僅需針對純皂土進行壓實試驗,即可預測不同碎石添加含量之碎石-皂土混合物壓縮曲線。如此可大幅減少實驗數量,並適用於壓縮曲線之加壓及解壓回彈過程,合理估算壓實應力、壓實密度及回彈量。將碎石-皂土之試驗結果與模式預測比較,證實在實用之範圍內預測結果相當理想。由於大部分國家之緩衝材料皆以多種配比設計考量,故當不同皂土、不同碎石顆粒材料選用時,透過本研究所發展之壓縮曲線預測方法,可快速掌握該設計緩衝材料之壓實行為及相關力學參數。
摘要(英) The buffer material in nuclear waste disposal was made up with pure bentonite or sand-bentonite mixture. The uniaxial compaction is time-saving and produce blocks with high precession in geometry. It is not necessary to reshape the geometry of block after compaction. The uniaxial compaction technique is widely used in buffer material researches. The major disadvantage of uniaxial compaction is that the blocks may become stress (or density) inhomogeneous due to the wall friction between block and the die. This study presents friction eliminate methods to correct friction effect and obtain friction-free compressibility curve. A series compaction test of varies h/d ratio and die wall condition were carried out in this study, and to demonstrate the method obtained friction-free compressibility curve of bentonite block.
In accordance with micromechanics, sand-bentonite mixtue can be seen as the two phase composite material. Basis on this concept can predicted compaction curve and rebounded constrained modulus of sand-bentonite composite.
關鍵字(中) ★ 壁面摩擦力
★ 脫模力
★ 微觀力學模式
★ 高放射性廢料處置
★ 碎石-皂土混合物
★ 粉體壓實
關鍵字(英) ★ Micromechanical model
★ Ejection force
★ Wall friction force
★ Powder compaction
★ Sand-bentonite mixture
★ High-level waste disposal
論文目次 第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究內容大綱 3
第二章 放射性廢料處置概述 5
2.1 放射性廢料分類與處置概念 5
2.1.1 中低放射性廢棄物處置 6
2.1.2 高放射性廢棄物處置 8
2.2 緩衝材料之概念與功能 11
2.2.1 緩衝材料之規格 16
2.2.2 皂土之特性 17
2.3 各國高放射性廢料處置概念現況 21
2.3.1 瑞典 23
2.3.2 瑞士 24
2.3.3 法國 25
2.3.4 日本 26
2.3.5 美國 29
2.3.6 國際合作地下岩石試驗室 31
第三章 壓實技術分類與前人研究概述 39
3.1 粉體壓實之特性 39
3.2 粉體壓實技術分類 40
3.3 粉體壓實技術相關研究及應用 43
3.4 壓實技術在緩衝材料製作之應用 48
3.5 各國緩衝材料壓實技術現況 52
3.5.1 瑞典壓實緩衝材料塊製作現況 52
3.5.2 日本壓實緩衝材料塊製作現況 58
第四章 壁面摩擦力量測方法之改良 64
4.1 壁面摩擦力直接量測方法與間接量測方法 64
4.2 不同壁面摩擦力量測方法量測誤差 66
4.2.1 壁面摩擦力量測之誤差擴散 66
4.2.2 密度量測誤差 72
4.2.3 脫模力量測誤差 78
4.3 摩擦力量測單軸壓實試驗內容 80
4.3.1 試驗材料 80
4.3.2 壓實模具之設計 81
4.3.3 單軸壓實試驗加壓及量測系統 82
4.3.4 單軸壓實試驗程序 83
4.4 摩擦力量測壓實試驗結果討論 86
4.4.1 壓縮曲線(COMPRESSIBILITY CURVE) 86
4.4.2 壁面摩擦力(WALL FRICTION FORCE) 88
4.4.3 摩擦指數(FRICTION INDEX) 91
第五章 影響壓實行為之因素 96
5.1 壓縮曲線之定義及特性 96
5.2 加壓解壓與壓實行為之關係 98
5.3 壓實速率對壓實行為之影響 100
5.4 皂土含水量對壓實行為之影響 104
5.5 碎石含量、種類及顆粒粒徑對壓實行為之影響 110
5.5.1 不同碎石含量 110
5.5.2 不同顆粒內含物種類 118
5.5.3 不同碎石粒徑 122
5.6 模具壁面條件對壓實行為之影響 125
5.7 壓實塊體長徑比對壓實行為之影響 129
第六章 無壁面摩擦力粉體壓縮曲線 130
6.1 摩擦力分佈理論 130
6.2 無壁面摩擦力壓縮曲線之觀念 133
6.3 壓實應力平均方法 139
6.3.1 算術平均法 139
6.3.2 幾何平均法 139
6.3.3 積分平均法 140
6.3.4 壓實應力平均法之比較 141
6.3.5 壓實應力平均法之驗證 145
6.4 長徑比外插法 158
6.4.1 實例說明 159
6.4.2 不同選用壓縮方程式之比較 168
6.5 壓實應力平均法與長徑比外插法之比較 171
6.5.1 壓實應力平均法與長徑比外插法之優缺點 173
6.6 無壁面摩擦力壓縮曲線之應用 173
第七章 脫模力與壁面摩擦力之關係 175
7.1 塊體脫模力之量測方法 175
7.2 塊體脫模力曲線概述 177
7.3 預測最大脫模力之理論推導 179
7.3.1 塊體解壓後之應力狀態 179
7.3.2 塊體之最大脫模力 181
7.3.3 預測脫模曲線方法 186
7.3.4 預測摩擦係數方法 187
7.4 脫模行為之預測驗證 188
7.4.1 最大脫模力與壁面摩擦力之關係 188
7.4.2 以最大脫模力預測壁面摩擦力 194
7.4.3 以最終壁面摩擦力預測最大脫模力 196
7.4.4 脫模曲線之預測 198
第八章 兩相顆粒加強材料之壓縮曲線特性 206
8.1 異質性大地材料之微觀力學模式 206
8.1.1 均質性與異質性 206
8.1.2 微觀力學之概念 207
8.1.3 體積平均(VOLUMETRIC AVERAGING) 208
8.2 兩相與多相顆粒混和材料微觀力學模式 209
8.2.1 混合定則(RULE OF MIXTURE)與上下限 211
8.2.2 HASHIN-SHTRIKMAN上下限 212
8.2.3 稀薄內含物理論(THE DILUTE SUSPENSION THEORY) 213
8.2.4 複合球模式(THE COMPOSITE SPHERES MODEL) 213
8.2.5 SCS模式(SELF-CONSISTENT SCHEME) 214
8.2.6 GSCS模式(GENERALIZED SELF-CONSISTENT SCHEME) 216
8.2.7 微分模式(DIFFERENTIAL SCHEME) 217
8.3 以線性模式預測非線性壓縮曲線之方法 225
8.4 添加碎石之壓縮曲線結果概述 229
8.5 不同顆粒內含物含量壓縮曲線之預測 237
8.5.1 加壓曲線預測說明 240
8.5.2 解壓回彈曲線預測說明 244
8.6 壓縮曲線預測成果與實用說明 248
8.6.1 壓縮曲線預測成果 248
8.6.2 壓縮曲線預測實用說明 263
第九章 結論 265
9.1 結論 265
9.2 建議 269
參考文獻 270
參考文獻 (1) 王永明,「以微分模式探求多相複合材料之力學性質」,碩士論文,國立成功大學土木系,台南 (1982)。
(2) 田永銘、吳柏林、朱正安,「高放射性廢料地質處置工程障壁系統與緩衝材料之熱傳導與壓實性質」,陸軍官校八十一週年校慶研討會,高雄 (2005)。
(3) 田永銘、吳柏林、莊文壽、張瑟稀,「碎石-皂土緩衝材料之壓實性質」,台灣公共工程學刊(修改中) (2005)。
(4) 田永銘、吳柏林,「壓實皂土塊體之無摩擦力壓縮曲線」,材料科學與工程(送審中)(2005)。
(5) 田永銘、吳柏林、黃慈君、朱正安、莊文壽,「溫度及鹽水濃度對壓實膨潤土回脹性質之影響」,台電工程月刊 (已接受) (2005)。
(6) 田永銘、黃偉慶、陳志霖、吳柏林,「碎石-皂土混合物之壓實行為」,2004岩盤工程研討會,淡水,第670~677頁(2004)。
(7) 田永銘、吳柏林、莊文壽、張瑟稀,「碎石-皂土混合物之壓實性質」,第十屆大地工程研討會,三峽(2003)。
(8) 田永銘、黃偉慶、黃慈君、朱正安、吳柏林,「溫度及鹽水濃度對壓實膨潤土回脹性質之影響」,第十屆大地工程研討會,三峽(2003)。
(9) 田永銘、黃偉慶、吳柏林、王欣婷,「緩衝材料壓實技術與其特性初步探討」,行政院原子能委員會委託研究計畫研究報告 (2003)。(NS910898)
(10) 田永銘、吳柏林、朱正安,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(II)」,行政院原子能委員會委託研究計畫研究報告 (2002)。(912001INER020)
(11) 田永銘、黃偉慶、陳志霖、吳柏林,「皂土—碎石複合材料之應力應變行為」,2002岩盤工程研討會,新竹,第753~762頁(2002)。
(12) 田永銘、黃偉慶、吳柏林,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(Ⅰ)」,行政院原子能委員會委託研究計畫研究報告 (2001)。(902001INER006)
(13) 台灣電力公司,「我國用過核燃料長程處置全程工作規劃書(2000年版)」(2000)。
(14) 吳志良,「以微分模式研究複合材料以黏彈力學性質」,碩士論文,國立成功大學土木系,台南 (1980)。
(15) 邱太銘,「放射性廢棄物管理」,財團法人中興工程科技研究發展基金會,台北(2002)。
(16) 柯義聰,「顆粒加強複合材料之彈性係數與熱膨脹係數研究」,碩士論文,國立成功大學土木系,台南 (1977)。
(17) 施清芳,「美國用過核燃料高放射性廢料最終處置測試場址現況」,核研季刊,第13期 (1999)。
(18) 核燃料サイクル開発機構,「高レベル放射性廃棄物の地層処分技術に関する研究開発 - 平成15年度報告」,JNC TN1400 2004-007 (2004)。
(19) 郭明峰,「皂土-碎石混合物之壓實性質」,碩士論文,國立中央大學土木系,中壢 (2004)。
(20) 陳文泉,「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木系,中壢 (2004)。
(21) 陳文泉、黃偉慶,「深地層處置緩衝材料熱-水力-機械-化學耦合作用探討」,核研季刊,第四十二期,第38~48頁(2002)。
(22) 陳志霖,「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木系,中壢 (2000)。
(23) 陳邦富,「顆粒加強複合材料之降伏與在均向應力下之塑性變形」,碩士論文,國立成功大學土木系,台南 (1981)。
(24) 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第44~54頁(2000)。
(25) 莊文壽,「Nagra與瑞士的放射性廢料最終處置計畫」,行政院原子能委員會核能研究所對內報告,龍潭 (1999)。
(26) 楊尊忠、許秀真、紀立民、繆延武,「用過核燃料最終處置場資料彙整研究」,行政院原子能委員會核能研究所研究報告INER-2606,龍潭 (2003)。
(27) 蔡昭明等,「放射性廢料辭彙」,行政院原子能委員會放射性物料管理局,台北 (1996)。
(28) 蔡昭明等。「放射性廢料安全管制報告書」,放射性物料管理處,台北(1994)。
(29) 譚建國,「以微分模式研究複合材料之力學性質」,行政院國家科學委員會研究報告,NSC 69-0201-E006a-07 (1980)。
(30) 譚建國、顏崇斌,「以微分模式探求纖維加強複合材料之熱彈係數」,中國工程學刊,第五卷,第三期(1982)。
(31) 譚建國、王永明,「多相複合材料之微分模式I整體彈性係數」,中國工程學刊,第六卷,第二期(1983)。
(32) 魏華洲、陳紹舟,「核電廠除役廢料分類及特性探討」,核研季刊,第41期 (2001)。
(33) Aboudi, J., Mechanics of Composite Materials, Elsevier, Amsterdam (1991).
(34) Aydm, I., Briscoe, B., Sanliturk, K. Y., “The internal form of compacted ceramic components : a comparison of a finite element modeling with experiment,” Powder Technology, Vol. 89, pp. 239-254 (1996).
(35) Bhattacharyya, A., “Plasticity of isotropic composites with randomly oriented and packeted inclusions,” International Journal of Plasticity, Vol. 10, No. 5, pp. 553-578 (1994).
(36) Bonnefoy, V., Doremus, P., and Puente, G., “Investigations on friction behaviour of treated and coated tools with poorly lubricated powder mixes,” Powder Metallurgy, Vol. 46, No. 3, pp. 224-228 (2003).
(37) Bonnenfant, D., Mazerolle, F., Suquet, P., “Compaction of powders containing hard inclusions : experiments and micromechanical modeling,” Mechanics of Materials, Vol. 29, pp. 93-109 (1998).
(38) Boonsinsuk, P., Pulles, B. C., Kjartanson, B. H., and Dixon, D. A., “Prediction of compactive effort for a bentonite-sand mixture,” 44th Canadian Geotechnical Conference Volume 2, Alberta, Canada, pp. 64.1-64.12 (1991).
(39) Borgesson, L., “Water flow and swelling pressure in non-saturated bentonite-based clay barrier,” Engineering Geology, Vol.21, pp. 229-237 (1985).
(40) Briscoe, B. J., Evans, P. D., “Wall friction in the compaction of agglomerated ceramic powders,” Powder Technology, Vol.65, pp.7-20 (1991).
(41) Briscoe, B. J., Rough, S. L., “The effects of wall friction in powder compaction,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 137, pp. 103-116 (1998).
(42) Briscoe, B. J., Rough, S. L., “The effects of wall friction on the ejection of pressed ceramic parts,” Powder Technology, Vol.99, pp. 228-233 (1998).
(43) Chapman, N. A., McKinley, I. G.,Hill, M. D., The Geological Disposal of Nuclear Waste, John Wiley & Sons, U. K. (1987).
(44) Christensen, R. M., Mechanics of Composite Materials, John-Wiley & Sons, New York (1979).
(45) Christensen, R. M., “A critical evaluation for a class of micro- mechanics models,” J. Mech. Phys. Solids, Vol. 38, No. 3, pp. 379-404 (1990).
(46) Clyens, S., “A variable geometry die for reducing compact ejection forces,” Int. J. Mech. Sci., Vol. 19, pp. 285-293 (1977).
(47) Denny, P. J., “Compaction equations: a comparison of the Heckel and Kawakita equations,” Powder Technology, Vol. 127, pp. 162-172 (2002).
(48) Eduljee, R. F., McCullough, R. L., Gillespie, J. W., “The influsion geometry on the elastic properties of discontinuous fiber composites,” Ploymer Engineering and Science, Vol. 34, No. 4, pp. 352-360 (1994).
(49) Eroshkin, O., Tsukrov, I., “On the micromechanical modeling of particulate composites with inclusions of various shapes,” International Journal of Solids and Structures, Vol. 42, pp. 409-427 (2005).
(50) Figliola, R. S., Beasley, D. E., Theory and Design for Mechanical Measurements, John Wiley & Sons, New York (1995).
(51) Giordano, S., “Differential schemes for the elastic characterization of dispersions of randomly oriented ellipsoids,” European Journal of Mechanics A/ Solids, Vol. 22, pp. 885-902 (2003).
(52) Graham, J., Oswell, J. M., Gray, M. N., “The effective stress concept in saturated sand-clay buffer,” Canadian Geotechnical Journal, Vol. 29, pp. 1033-1043 (1992).
(53) Grindrod, P., Peletier, M., Takase, H., “Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids,” Engineering Geology, Vol. 54, pp.159-165 (1999).
(54) Guyoncourt, D. M. M., Tweed, J. H., Gough, A., Dawson, J., and Pater, L., “Constitutive data and friction measurements of powders using instrumented die,” Powder Metallurgy, Vol. 44, pp.25-33 (2001).
(55) Hashin, H., “Analysis of composite materials–A Survey,” Journal of Applied Mechanics. Vol. 50, pp.481-505 (1983).
(56) Hsieh, C. L., Tuan, W. H., Wu, T. T., “Elastic behavior of a model two-phase material,” Journal of the European Ceramic Society, Vol. 24, pp. 3789-3793 (2004).
(57) Hsieh, C. L., Tuan, W. H., “Elastic properties of cermic-metal particulate composites,” Materials Science and Engineering A, Vol. 393, pp. 133-139 (2005).
(58) Japan Nuclear Cycle Development Institute, Repository Design and Engineering Technology, JNC Supporting Report 2, Japan (1999).
(59) Johannesson, L. E., Börgesson, L., Sanden, T., Compaction of Bentonite Blocks – Development of Technique for Industrial Production of Blocks which are Manageable by Man, SKB technical report TR 95-19, Swedish (1995).
(60) Johannesson, L. E., Börgesson, L., Compaction of Bentonite Blocks – Development of Techniques for Production of Blocks with Different Shapes and Sizes, SKB technical report R 99-12, Swedish (1998).
(61) Johannesson, L. E., Compaction of Full Size Blocks of Bentonite for the KBS-3 Concept – Initial Tests for the Evaluating the Technique, SKB technical report R 99-66, Swedish (1999).
(62) Johannesson, L. E., Nord, S., Pusch, R., Sjöblom, R., Isostatic Compaction of Beaker Shaped Bentonite Blocks on the Scale 1:4, SKB technical report TR 00-14, Swedish (2000).
(63) Jones, R. M., Mechanics of Composite Materials, Scripta Book Company, Washington, D.C. (1975).
(64) Kara, A., Tobyn, M. J., Stevens, R., “An application for zirconia as a pharmaceutical die set,” Journal of the European Ceramic Society, Vol. 24, pp. 3091-3101 (2004).
(65) Khambekar, J., Model for Compaction and Ejection of Powder Metal Parts, Thesis of Worcester Polytechnic Institute in Mechanical Engineering (2003).
(66) Kim, K. T., Lee, H. T., “Effect of friction between powder and a mandrel on densification of iron powder during cold isostatic pressing,” Int. J. Mech. Sci., Vol. 40, No. 6, pp. 507-519 (1998).
(67) Kishino, Y, Proceedings of the 4th International Conference on Micromechanics of Granular Media – Powders and Grains 2001, A. A. Balkema, Netherlands (2001).
(68) Klemm, U., Sobek, D., Schone, B., Stockmann, J., “Friction measurements during dry compaction of silicon carbide,” Journal of the European Ceramic Society, Vol. 17, pp. 141-145 (1997).
(69) Koczak, M. J., McGraw, J. F., “A laboratory/production comparison of powder compacting and ejection response,” The International Journal of powder Metallurgy & Powder Technology, Vol. 16, No. 1, pp. 37-54 (1980).
(70) Kolaska, H., Schulz, P., Beiss, P., Ernst, E., “Investigations on die compaction,” Powder Metallurgy International, Vol. 25, No. 1, pp. 30-35 (1993).
(71) Komine, H., Ogata, N., “Experimental study on swelling characteristics of sand-bentonite mixture for nuclear waste disposal,” Soils and Foundations, Vol. 39, pp. 83-97 (1999).
(72) Kozaki, T., Sato, Y., Nakajima, M., Kato, H., Sato, S., and Ohashi, H., “Effect of particle size on the diffusion behavior of some radionuclides in compacted bentonite,” Journal of Nuclear materials, Vol. 270, pp 265-272 (1999).
(73) Krauskopf, K. B., Radioactive Waste Disposal and Geology, Chapman and Hall, U. K. (1988).
(74) Laws, N., McLaughlin, R., “The effect of fibre length on the overall moduli of composite materials,” J. Mech. Phys. Solids, Vol. 27, pp. 1-13 (1979).
(75) Lee, B. J., Mear, M. E., “Effect of inclusion shape on the stiffness of nonlinear two-phase composites,” J. Mech. Phys. Solids, Vol. 39, No. 5, pp. 627-649 (1991).
(76) Lefebvre, L. P., Mongeon, P. E., “Effect of coatings on ejection characteristics of iron powder compacts,” Powder Metallurgy, Vol. 46, No. 1, pp. 43-48 (2003).
(77) Li, F., Mechanical Behavior of Powders : Tester Design, Load-response Measurement and Constitutive Modeling, Thesis in Agicultural and Biological Engineering of Pennsylvania State University, U.S. (1999).
(78) Li, Y., Liu, H., Rockabrand, A., “Wall friction and lubrication during compaction of coal logs,” Powder Technology, Vol. 87, pp 259-267 (1996).
(79) Macleod, H. M., Marshall, K., “The Determination of density distribution in ceramic compacts using autoradiography,” Powder Technology, Vol. 16, pp. 107-122 (1977).
(80) Marcial, D., Delage, P., Cui, Y. J., “On the high stress compression of bentonites,” Canadian Geotechnical Journal, Vol. 39, pp. 812-820 (2002).
(81) Markov, K., Preziosi, L., Heterogeneous Media – Micromechanics Modeling Methods and Simulations, Birkhauser, Boston (2000).
(82) Mclaughlin, R., “A study of the differential scheme for composite materials,” International Journal of Engineering Science. Vol. 15, pp.237-244 (1977).
(83) Mitchell, J. K., Fundamentals of Soil Behavior, John Wiley & Sons, New York (1993).
(84) Mosbah, P., Bouvard, D., Ouedraogo, E., and Stutz, P., “Experimental techniques for analysis of die pressing and ejection of metal powder,” Powder Metallurgy, Vol.40, pp.269-277 (1997).
(85) Neederman, R. M., Statics and Kinematics of Granular Materials, Cambridge University Press, U. K. (1992).
(86) Nemat-Nasser, S., Hori, M., Micro - Mechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam (1993).
(87) Norris, A. N., “A differential scheme for the effective moduli of composites,” Mechanics of Materials, Vol. 4, pp. 1-16 (1985).
(88) NEA, Engineered Barrier Systems and the Safety of Deep Geological Repositories, OECD Nuclear Energy Agency, France (2003).
(89) Omine, K., Ochiai, H., and Yoshida, N., “Estimation of in-situ strength of cement-treated soils based on a two-phase mixture model,” Soils and foundations, Vol. 38, No. 4, pp.17-29 (1998).
(90) Oscarson, D. W., Dixon, D. A., Gray, M. N., “Swelling capacity and permeability of an unprocessed and a processed bentonitic clay,” Engineering Geology, Vol. 28, pp.281-289 (1990).
(91) Owen, A. J., Koller, I., “A note on the Young’s modulus of isotropic two-component materials,” Polymer, Vol. 37, No. 3, pp.527-530 (1996).
(92) Ozkan, N., Briscoe, B. J., “Characterization of die-press green compacts,” Journal of the European Ceramic Society, Vol. 17, pp. 697-711 (1997).
(93) Paramanand, Ramakrishnan, P., “Effect of powder characteristics on compaction parameters and ejection pressure of compacts,” Powder Metallurgy, Vol. 27, No. 3, pp. 163-168 (1984).
(94) Pusch, R., Waste Disposal in Rock, Elsevier, Netherlands (1994).
(95) Pusch, R., The Buffer and Backfill Handbook Part 1 : Definitions, Basic Relationships, and Laboratory Methods, SKB technical report TR 02-20, Swedish (2002).
(96) Pusch, R., The Buffer and Backfill Handbook Part 2 : Materials and Techniques, SKB technical report TR 02-12, Swedish (2002).
(97) Pusch, R., The Buffer and Backfill Handbook Part 3 : Models for Calculation of Processes and Behaviour, SKB technical report TR 03-07, Swedish (2003).
(98) Qiu, Y. P., Weng, G. J., “The influence of inclusion shape on the overall elastoplastic behavior of a two-phase isotropic composite,” Int. J. Solids Structures, Vol. 27, No. 12, pp. 1537-1550 (1991).
(99) Ramberger, R., and Burger, A., “On the application of the Heckel and Kawakita equations to Powder Compaction,” Powder Techonlogy, Vol. 43, pp. 1-9 (1985).
(100) Roure, S., Bouvard, D., Doremus, P., Pavier, E., “Analysis of die compaction of tungsten carbide and cobalt powder mixtures,” Powder Metallurgy, Vol. 42, pp. 164-170 (1999).
(101) Rowe, R. K., Quigley, R. M., Booker, J. R., Clayey Barrier Systems for Waste Disposal Facilities, E & FN SPON, London (1995).
(102) Smellie, J., Wyoming Bentonites : Evidence from the Geological Record to Evaluate the Suitability of Bentonite as a Buffer Material during the Long-term Underground Containment of Radioactive Wastes, SKB technical report TR 01-26, Swedish (2001).
(103) Stanley-Wood, N. G., Enlargement and Compaction of Particulate Solids, Butterworths, U.K. (1983).
(104) Tandon, G. P., Weng, G. J., “The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composite,” Polymer Composites, Vol. 5, No. 4, pp. 327-333 (1984).
(105) Tarn, J.-Q., “Thermoelastic moduli of composites by the differential scheme,” Proc. Natl. Sci. Counc. ROC, Vol. 3, No. 1, pp. 100-105 (1979).
(106) Tarn, J.-Q., Wang, Y. M., “A differential scheme for multi phase composite,” Proc. Int. Symp. Eng. Sci. and Mechanics, NCKU/AAS, Taiwan, pp. 1179-1198 (1981).
(107) Tien, Y. M., Wu, P. L., Chu, C. A., “Thermal Conductivity and Compaction Characteristics of Bentonite-Base Buffer Materials,” 2005 Taiwan Atomic Energy Fourm (TAEF), Longtan, Taiwan (2005).
(108) Tien, Y. M., Wu, P. L., Kuo, M. F., and C. A. Chu, “Wall Friction Measurement and Compaction Characteristics of Bentonite Powders,” submitted to Powder Technology (2005).
(109) Tien, Y. M., Wu, P. L., Kuo, M. F., “Compaction Properties of Crushed Rock - Bentonite Mixture,” submitted to Chinese Journal of Geotechnical Engineering (2005).
(110) Tien, Y. M., Wu, P. L., Chuang, W. S., and Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Applied Clay Science, Vol. 26, pp. 489-498 (2004).
(111) Tien, Y. M., Wu, P. L., Chuang, W. S., “The Friction-Free Compressibility Curve of Bentonite Block,” 2nd International Meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Tours, France (2004).
(112) Tien, Y. M., Wu, P. L., and Kuo, M. F., “The measuring method for wall friction during bentonite block compaction and ejection,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, ROC, pp. 187-194 (2004).
(113) Tien, Y. M., Wu, P. L., Chuang, W. S., Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Reims, France (2002).
(114) Turner, C. D., Ashby, M. F., “The cold isostatic pressing of composite powders – I. Experimental investigations using model powders,” Acta. Mater., Vol. 44, No. 11, pp. 4521-4530 (1996).
(115) Ward, M., Billington, J. C., “Effect of zinc stearate on apparent density, mixing, and compaction/ejection of iron powder compacts,” Powder Metallurgy, Vol. 22, No. 4, pp. 201-208 (1979).
(116) Wardrop, W. L & Associates Ltd, Buffer and Backfilling Systems for a Nuclear Fuel Waste Disposal Vault, AECL technical record TR-341, Canada (1985).
(117) Wiebe, B., Graham, J., Tang, G. X., Dixon, D., “Influence of pressure, saturation, and temperature on the behaviour of unsaturated sand-bentonite,” Canadian Geotechnical journal, Vol. 35, pp. 194-205 (1998).
(118) Wikman, B., Solimannezhad, N., Larsson, R., Oldenburg, M., Haggblad, H.-A., “Wall friction coefficient estimation through modeling of powder die pressing experiment,” Powder Metallurgy, Vol. 43, pp. 132-138 (2000).
(119) Willis, J. R., “The overall elastic response of composite materials,” Transactions of the ASME, Vol. 50, pp. 1202-1209 (1983).
(120) Willis, J. R., “On methods for bounding the overall properties of nonlinear composites,” J. Mech. Phys. Solids, Vol. 39, No. 1, pp. 73-86 (1991).
(121) Wu, L.-Z., Meng, S.-G., Du, S.-Y., “The overall response of composite materials with inclusions,” Int. J. Solids Structures, Vol. 34, No. 23, pp. 3021-3039 (1997).
(122) Wu, T. T., “On the parametrization of the elastic moduli of two-phase materials,” Journal of Applied Mechanics, Vol. 32, pp. 211-214.
(123) Wu, T. T., “The effect of inclusion shape on the elastic moduli of a two-phase material,” Int. J. Solids Structures, Vol. 2, pp. 1-8 (1966).
(124) Yong, R. N., Boonsinsuk, P., Wong, G., “Formulation of backfill material for nuclear fuel waste disposal valut,” Canadian Geotechnical Journal, Vol.23, pp. 216-228 (1986).
(125) Zavaliangos, A., Laptev, A., “The densification of powder mixtures containing soft and hard components under static and cyclic pressure,” Acta Mater., Vol. 48, pp. 2565-2570 (2000).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2005-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明