博碩士論文 956204003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.137.187.250
姓名 林怡男(Yi-nan Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 應力歷史對麓山帶沉積岩孔隙率及滲透率應力相依模式影響之探討
(Stress-history dependent porosity/permeability models of sedimentary rocks)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於盆地構造發育、石油蘊藏與開採以及發展中的二氧化碳封存評估等,了解沉積盆地滲透率分布為一項相當基本的工作。另一方面,岩石的孔隙率也很重要,以二氧化碳封存為例,為了解地層可容納多少的二氧化碳,即需要地層之孔隙率方得以計算。相對於滲透率的量測,岩石的孔隙率量測較方便,因此許多的研究嘗試建立孔隙率及滲透率間的關係,並間接根據岩石孔隙率資料來推測岩石的滲透率。
本研究利用高圍壓滲透/孔隙儀(YOKO2)以量測岩石試體在受應力作
用下的孔隙率和滲透率的變化情形,試體取自中油深井(深度約1~2 公里)與北投貴子坑地表露頭。根據本試驗結果及文獻資料,本研究發現砂岩與粉砂岩、頁岩的孔隙率、滲透率實驗結果明顯不同,砂岩孔隙率(12%~20%)與滲透率(10-13m2~10-16m2)較大,而粉砂岩與頁岩孔隙率(7%~11%)與滲透率值(10-15m2~10-19m2)較小。大致上同一岩性之岩石其孔隙率隨地質年代增加而遞減,由大至小排列分別為卓蘭層、桂竹林層、南莊層、五指山層。氣體滲透率實驗的量測應考慮克林堡效應,經克林堡效應修正後發現,砂岩試體之氣體與液體滲透率差異不大,然而粉砂岩或頁岩之液體滲透率將較氣體滲透率低了1~2 數量級,使用氣體進行粉砂岩或頁岩的滲透率量測可能高估了液體之滲透率。
孔隙率與滲透率的應力模型建立,應考慮最大預壓密應力,以合理的與實驗資料擬合。本研究分別以滲透率-應力曲線及孔隙率-應力曲線決定岩石所受最大預壓密應力,結果發現孔隙率-應力曲線之正常壓密及過壓密轉折點所對應之有效應力,與試體之最大預壓密應力相當接近,亦最大預壓密應力可透過孔隙率試驗合理推估。
根據本研究建議之應力歷史相依之孔隙率及滲透率力學模式,將各試體相同圍壓下之孔隙率與滲透率於雙對數座標下作圖, 並與Kozeny-Carman 方程式所得到的孔隙率對滲透率的關係曲線進行比較,發現考慮最大預壓密應力所得之孔隙率與滲透率關係曲線並不如Kozeny-Carman 方程式一樣是單一曲線關係,亦即應力歷史將影響岩石之孔隙率與滲透率關係式。
摘要(英) To study the generation of basin structure, oil mine, oil extraction, and the
developing technology of sealing for safekeeping of CO2, etc., understanding
the spread of permeability of sedimentary basin is a fundamental job.
Additionally, the porosity of rocks is important as well, take the sealing and
safekeeping of CO2 for instance, it is necessary to know the porosity of rock
before we can get to know how much amount of CO2 can be stored in the layer.
Relative to the measurement of permeability, the measure porosity of rocks is
easier, therefore, many studies try to develop the relationship between
permeability and porosity of rocks, and estimate the permeability indirectly from
porosity of the rocks.
This study uses YOKO2 to measure the porosity and the permeability of
rocks under by stress. The sample is obtained from the deep well of CPC
(around 1~2km of depth), and from the ground surface of Kwetsuken of Beto.
According to this study, we find the permeability and the porosity of rocks
among sandstone, siltstone(or shale) are quite different, the porosity of
sandstone (12%~20%) and its permeability (10-13m2~10-16m2) are larger,
whereas the ones (7%~11%) & (10-15m2~10-19m2) of siltstone(or shale) are
smaller. Basically, the porosity of sandstone decrease as the buried depth
increase. From the elder to the younger, Cholan formation have the largest
porosity, Kueichoulin formation the next, then Nanchung formation,
Wuchishan formation have the smallest porosity.
The measuring permeability by gas flow should take the Klinkenberg
effect into account. After the modification of Klinkenberg effect on
permeability, we find the tiny difference between permeability by gas flow and
liquid flow, however, permeability of siltstone( or shale) using liquid flow are
1~2 orders samller than permeability using gas flow. It may overestimate the
permeability of siltstone(or shale) using gas flow to measure permeability.
The relation between stress and the porosity/permeability model of rocks
should take the maximum pre-consolidation stress into account, so as to model
the experiment data reasonably. This study determines the maximum preconsolidation
stress from the permeability-stress curve and porosity-stress
curve, respectively; as a result, we find the corresponding effective stresses to
the turning points of the normal consolidation and over-consolidation levels of
porosity-stress curve are very close to the one estimated from the buried depth
of sample, i.e. the maximum pre-consolidation pressure can be estimated
reasonably through the porosity-stress curves.
According to the stress-history-dependent models of between porosity
and permeability, this study proposed a stress-history dependent relation
between porosity and permeability. A stress-history dependent relation is
fuction of the maximum pre-consolidation stress find the relative between
porosity and permeability instead of the single curve as the equation of
Kozeny-Carman exhibits. That is, the stress history will influence the relation
between the porosity and the permeability.
關鍵字(中) ★ 克林堡效應
★ 孔隙率
★ 應力歷史
★ 滲透率
關鍵字(英) ★ stress-history
★ porosity
★ permeability
★ Klinkenberg effect
論文目次 目 錄
頁次
英文摘要-------------------------------------------------------------------------------------i
中文摘要-----------------------------------------------------------------------------------iii
誌謝------------------------------------------------------------------------------------------v
目錄-----------------------------------------------------------------------------------------vi
圖目錄--------------------------------------------------------------------------------------ix
表目錄-------------------------------------------------------------------------------------xiv
一 緒論........................................................................................................ 1
1.1 研究動機與目的.................................................................................. 1
1.2 研究流程.............................................................................................. 6
1.3 論文內容.............................................................................................. 8
二 研究方法................................................................................................ 9
2.1 孔隙率與滲透率的量測...................................................................... 9
2.1.1 滲透率量測............................................................................. 12
2.1.2 孔隙率量測............................................................................. 15
2.2 建立孔隙率、滲透率之應力相依模型........................................... 17
2.3 掃描式電子顯微鏡(SEM)................................................................. 18
三 結果與討論.......................................................................................... 21
3.1 孔隙率與滲透率量測........................................................................ 21
3.1.1 實驗試體描述......................................................................... 21
3.1.2 試體埋深深度估計................................................................. 23
3.1.3 TCDP 鑽井岩心試體資料...................................................... 24
3.1.4 孔隙率、滲透率實驗結果..................................................... 29
3.2 砂岩與粉砂岩滲透率之克林堡效應修正....................................... 33
3.3 應力依存性及應力歷史對滲透率之影響....................................... 50
3.3.1 滲透率的有效應力依存性及最大預壓密應力..................... 50
3.3.2 考慮應力歷史之滲透率加壓、解壓模型的建立................. 60
3.4 應力依存性及應力歷史對孔隙率之影響....................................... 67
3.4.1 孔隙率的應力依存性及最大預壓密應力............................. 67
3.4.2 考慮應力歷史之孔隙率加壓、解壓模型建立..................... 77
3.5 孔隙率與滲透率的關係.................................................................... 85
3.6 微觀構造的觀察................................................................................ 89
3.6.1 頁岩、粉砂岩的微觀造觀察結果......................................... 89
3.6.2 砂岩的微觀構造觀察結果..................................................... 94
四 結論和建議........................................................................................ 101
參考文獻............................................................................................................103
附錄一 試體照片.…………………………...……………………….………105
附錄二 氣體滲透率克林堡效應修正……..….……………………..……….108
附錄三 由滲透率與孔隙率實驗資料得最大預壓密應力之過程…………..125
附錄四 應力歷史相依孔隙率及滲透率計算………………………………..135
參考文獻 [1] Brace, W. F., “Permeability from resistivity and pore shape” , Journal of
Geophysical Research, Vol.82, No.23, pp.3343-3349, 1977.
[2] David, C., Wong, T.F., Zhu, W., Zhang, J., “Laboratory measurement of
compaction-induced permeability change in porous rocks: implication for
the generation and maintenance of pore pressure excess in the crust” , Pure
and Applied Geophysics Vol.143, No.1-3, pp.425-456, 1994.
[3] Klinkenberg, L. J., “The permeability of porous media to liquids and
gases” , American Petroleum Institute, drilling and production practices,
pp.200-213, 1941.
[4] 許瑞育,“Stress-dependent fluid flow properties of sedimentary rocks and
overpressure generation",國立中央大學,碩士論文,民國96 年。
[5] Shi, T., Wang, C.Y., “Pore pressure generation in sedimentary basins:
overloading versus aquathermal” , Journal of Geophysical
Research ,Vol.91(B2), pp.2153-2162, 1986.
[6] Yang, Y., Aplin, A.C., “Permeability and petrophysical properties of 30
natural mudstones” , Journal of Geophysical Research , Vol.112,
pp.1-14(B03206), 2007.
[7] Brown, E.T., “Rock characterization testing and monitoring ISRM suggested
methods” , pp.83-89, 1981.
[8] Tanikawa, W., Shimamoto, T., Wey, W.K, Wu, W.Y., Lin, C.W., Lai, W.C.,
“Sedimentation and generation of abnormal fluid pressure in the focal area
of 1999 Taiwan, Chi-Chi earthquake” , Proceedings of the USRM
International Symposium 3rd ARMS, pp.553-557, 2004.
[9] Tanikawa, W., Shimamoto, T., “Klinkenberg effect for gas permeability
and its comparison to water permeability for porous sedimentary rocks” .
Hydrology and Earth System Sciences Discussions 3, pp.1315-1338, 2006.
[10] Scheidegger, A.E., The physics of flow through porous media, 3rd Edition.
University of Toronto Press, Toronto.,1974.
[11] 陳培源,「臺灣地質」,科技圖書,民國95 年3 月。
[12] 江紹平,「台灣中部早期前陸盆地的地層紀錄」,國立中央大學,碩士
論文,民國96 年。
[13] 何春蓀,台灣地質概論-台灣地質圖說明書,增訂二版,經濟
部中央地質調查所,民國75年。
[14] 黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威、徐祥宏,「台
灣陸上斷層帶地質構造與地殼變形調查研究(5/5)-台灣西部麓山帶地區
地下構造綜合分析」,經濟部中央地質調查所報告93-13號,民國93年。
[15] http://ncu.npotech.org.tw/Page_Show.asp?Page_ID=99
[16] Morrow, C.A., Shi, L., Byerlee, J.D., “Permeability of fault gouge under
confining pressure and shear stress” , Journal of Geophysical Research ,
Vol.89 , pp.3193-3200, 1984.
[17] Singh, V.P., “Kinematic wave modeling in water resources: Enviromental
hydrology” , Wiley, New York, 1997
[18] Melissa, R.C., Budhu, M., “A practical approach to grain shape
quantification” , Engineering Geology , Vol.143, No.1-2, pp.1-16, 2008.
[19] Schlueter, E.M., “Predicting the transport properties of sedimentary rocks
from microstructure” , Department of Materials Science and Mineral
Engineering University of California and Earth Sciences Division
Lawrence Berkeley Laboratory University of California Berkeley, Ph. D
Thesis , 1995
指導教授 董家鈞(Jia-jyun Dong) 審核日期 2009-2-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明