博碩士論文 956204004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.118.140.78
姓名 沈士崴(Shih-wai Shen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 台北盆地松山層三維剪力波速度構造
(3D Shear-wave Velocity Structure of Songshan Formation, Taipei Basin.)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用台北盆地內氣象局自由場強震站場址鑽探及剪力波測量資料暨盆地內豐富的工程地質鑽探資料與少數鑽孔內的剪力波測量資料,以地質統計學方法對剪力波速度及標準貫入試驗值SPT-N進行三維空間分析,並使用三維的聯合克力金法進行空間資料推估,以瞭解台北盆地松山層土壤的剪力波速度在空間上的分布及其變異性,提供後續相關研究之參考。
  結構分析顯示,松山層土壤的剪力波速度及SPT-N性質具有良好的空間變異關係,因此可將剪力波速度做為主要變數及SPT-N值做為輔助變數,以聯合克力金法進行空間推估,得到台北盆地內三維規則網格的剪力波速度值以及估計誤差值,繪製各不同深度之剪力波速度等值圖及剖面圖。
  由研究結果顯示,松山層土壤的剪力波速度大體上隨深度增加而增加;從10公尺深約100~200m/s逐漸增加到45公尺深約400~500m/s。平面變化上,若以松山層的上半部或距地表30公尺內平均剪力波速Vs30來看,是以台北市中山區一帶最低 (160~180m/s);次低區 (180~200m/s) 包括內湖以西之台北盆地東北半部,包括:台北市北投、士林、大同、中山、中正、大安、信義、松山等區及台北縣三重市。由上述次低區往西南,Vs30逐漸增加,到新莊、板橋、中和及永和一帶Vs30約為220~240m/s,樹林、土城一帶可達260m/s。本研究結果與前人對於台北盆地剪力波速度的研究結果相符,但有更豐富的細節表現及更小的推估誤差。
摘要(英) This study estimates shear-wave velocity structure of Songshan Formation in Taipei basin using shear-wave velocity data and standard penetration test data (SPT-N) from boring and testing data at free-field strong-motion station sites and Geo2005 database, and other sources. Geostatistical analysis of semivariograms and cross-semivariograms in 3D and cokriging method was used for the estimation.
Structural analyses of shear-wave velocity data and SPT-Ns show good spatial relations in each semivariogram and cross-semivariogram. Therefore, shear-wave velocity was used as a primary variable and SPT-N as a secondary variable in the cokriging method. The result is a 3D regular grid digital model, and is shown by a set of contour maps and profile maps.
Shear-wave velocity value in the Songshan Formation increases with depth; it is about 100~200m/s within 10m depth and increases to 400~500m/s at about 45m depth. Horizontal variation of Shear-wave velocities may be shown by the variation of average shear-wave velocity within 30m depth (Vs30). The Vs30 map shows low value (160~180m/s) at Zhongshan District, and shows moderately low value (180~200m/s) at Beitou, Shilin, Datong, Zhongshan, Zhongzheng, Daan, Xinyi, Songshan District and Sanchong City. Shear-wave velocities increase from the above-mentioned low and moderately-low zones to the southwest, and reach a moderate value (220~240m/s) at Sinjhuang, Banciao, Junghe and Yunghe. It reaches 260m/s at Shulin and Tucheng. Result of this study is similar with previous researches in general, but it shows more details and lower estimation error in the variation of shear-wave velocities.
關鍵字(中) ★ 聯合克力金法
★ 松山層
★ 剪力波速度
★ 台北盆地
關鍵字(英) ★ Songshan Formation
★ cokriging
★ shear-wave velocity
★ Taipei basin
論文目次 目 錄........................................................................................V
圖 目......................................................................................VII
表 目........................................................................................X
第1章 緒論.............................................................................1
1.1 研究動機與目的.....................................................................1
1.2 文獻回顧.................................................................................1
1.3 研究區域簡介.........................................................................2
1.4 研究架構與流程.....................................................................7
第2章 研究方法......................................................................7
2.1 地質統計學原理.......................................................................7
2.2 地質統計學內插方法...............................................................7
2.2.1 聯合克力金法................................................................7
第3章 資料蒐集與處理........................................................10
3.1 研究資料蒐集與處理.............................................................10
3.1.1 強震測站場址工程地質鑽探資料..............................10
3.1.2 國土資訊系統工程地質鑽探資料..............................10
3.1.3 中央大學應用地質所工程地質研究室台北盆地鑽探資料庫..........................................................................10
3.2 資料篩選檢核.........................................................................12
第4章 剪力波速度三維空間推估........................................14
4.1 基本資料統計.........................................................................14
4.1.1 剪力波速度資料基本統計..........................................14
4.1.2 標準貫入試驗資料基本統計......................................15
4.2 剪力波速度資料與標準貫入試驗值資料空間分析.............15
4.2.1 剪力波速度資料半變異圖分析..................................15
4.2.2 標準貫入試驗資料半變異圖分析..............................17
4.3 台北盆地剪力波速度與標準貫入試驗資料相關性分析.....18
4.3.1 迴歸分析......................................................................18
4.3.2 交叉半變異圖分析......................................................19
4.4 鑽井孔口高程趨勢面.............................................................21
4.4.1 趨勢面分析..................................................................22
4.4.2 趨勢面使用..................................................................22
4.5 搜尋半徑.................................................................................23
4.6 研究結果.................................................................................24
第5章 討論............................................................................51
5.1 與「台北盆地松山層土壤性質之空間分析」比較.................51
5.1.1 內插方法比較..............................................................51
5.1.2 內插結果比較..............................................................52
5.2 與「臺灣自由場強震站場址分類之進一步研究」比較.........66
5.2.1 內插方法比較..............................................................66
5.2.2 內插結果比較..............................................................66
5.3 交叉驗證.................................................................................68
第6章 結論與建議................................................................72
6.1 結論.........................................................................................72
6.2 建議.........................................................................................72
參考文獻...................................................................................74
參考文獻 Anderson, J. G., Y. Lee, Y. Zeng, and S. Day﹙1996﹚Control of strong motion by the upper 30 meters, Bulletin of the Seismological Society of America, 86, 1749–1759.
Boore, D. M., and W. B. Joyner﹙1989﹚Peak acceleration from the 17 October 1989 Loma Priera earthquake, Seismological Reasearch Letters, 60, 151–166.
Boore, D. M., W. B. Joyner, and T. E. Fumal﹙1993﹚. Estimation of response spectra and peak accelerations from Western North American earthquakes: an interim report, U. S. Geological survey Open-File Report, 93–509.
Borcherdt, R. D.﹙1970﹚Effects of local geology on ground motion near San Francisco Bay, Bulletin of the Seismological Society of America, 60, 29-61.
Borcherdt, R. D.﹙1994a﹚Estimates of site-dependent response spectra for design﹙methodology and justification﹚, Earthquake Spectra, 10, 617-653
Borcherdt, R. D.﹙1994b﹚An integrated methodology for estimates of site-dependent response spectra, seismic coefficients for site dependent building code provisions, and predictive GIS maps of strong ground shaking, in Proceedings of Seminar on New Developments in Earthquake Ground Motion Estimation and Implications for Engineering Design Practice, Applied Technology Council ATC 35-1, 10-1–10-44.
Building Seismic Safety Council﹙BSSC﹚﹙1998﹚1997 Edition NEHPR Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 302/303, Part 1﹙Provisions﹚and Part 2﹙Commentary﹚, developed for the Federal Emergency Management Agency, Washing, DC., 337p.
Building Seismic Safety Council﹙BSSC﹚﹙2004﹚2003 Edition NEHPR Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, FEMA 450, Part 1﹙Provisions﹚, Prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency, Washing, DC., 288p.
Castro, R. R., M. Mucciarelli, F. Pacor, and C. Petrungaro﹙1997﹚. S-wave site-response estimates using horizontal-to-vertical spectral rations, Bulletin of the Seismological Society of America, 87, 256–260.
Chen, F. Y., and P. M. Liew (1990) Palynological study of the Sungshan Formation, Taipei basin: Proc. Geol. Soc. China, vol. 33, p. 21-37.
Chen, M. H., K. L. Wen, C. H. Loh, and R. L. Nigbor﹙2004﹚Experience of Suspension P-S Logging Method and empirical formula of shear wave velocities in Taiwan, submitted to Journal of Soil Foundation.
Chiou, B., and K. L. Wen﹙2006﹚Estimation of VS30 at CWB’s Free-Field Sites, Chiou and Youngs PEER-NGA Empirical Ground Motion Motion Model for the Average Horizontal Component of Peak Acceleration and Pseudo-Spectral Acceleration for Spectral Periods of 0.01 to 10 Seconds, Appendix C, C-1–C-5.
Darragh, R. B. and A. F. Shakal﹙1991﹚The site response of two rock and soil station pairs to strong and week ground motion, Bulletin of the Seismological Society of America, 81, 1885–1899
Diehl J.﹙2001﹚GEOVision P-S Log Notes & Procedures。
Hohn (1988) Geostatistics and Petroleum Geology: Van Nostrand Reinhold, New York, p. 101-159.
Imai, T and R. Tonouchi﹙1982﹚Correction of N value with S-wave velocity, Proceeding of Second European Symposium on Penetration Test, Amsterdam,24-27 May, 67-72.
Imai, T.,﹙1977﹚P- and S-wave velocities of the ground in Japan, 9th ICSMFE, 257-260.
International Conference of Building Officials﹙ICBO﹚ ﹙1991﹚Uniform Building Code, Whittier, California., 1050 p.
International Conference of Building Officials﹙ICBO﹚ ﹙1997﹚Uniform Building Code, Whittier, California., 492 p.
Isaaks, E. H., and Srivastava (1989) An introduction to applied geostatistics. Oxford Uni. Press, New York.
Japan Road Association﹙JRA﹚ ﹙1996﹚ Japan Specifications for Highway Bridges, Part V: Seismic Design, Tokyo, Janpan.
Jinan, Z.﹙1987﹚Correlation between seismic wave velocity and the number of blow of SPT and depth, Selected Papers from the Chinese Journal of Geotechnical Engineering, ASCE, 92-100.
Journel, A. G., and C. J. Huijbregts (1978) Mining geostatistics: Academic Press, New York.
Joyner, W. B., and T. E. Fumal﹙1985﹚Predictive mapping of earthquake ground motion in Evaluating Earthquake Hazards in the Los Angeles Region: An Earth-Science Perspective, J. E. Ziony﹙Editor﹚, U. S. Geological survey professional paper, 1360, 203–220.
Lee, C. T., C. T. Cheng, C. W. Liao, and Y. B. Tsai﹙2001﹚Site classification of Taiwan Free-Field Strong-Motion Stations, Bulletin of the Seismological Society of America, 91, 1283–1297.
Lee, S.H.H﹙1988﹚Regression model for shear wave velocity of sandy and silty soils of Taipei basin, Proc. of the CCNAA-AIT Joint SeminarWorkshop on Research and Application for Multiple Hazards Mitigation, pp.489-494, Taipei.
Lew, M. and K. W. Campbell﹙1985﹚Relations between shear wave velocity and depth of overburden, Proc. Measurement and Use of Shear Wave Velocity for Evaluation Dynamic Properties, ASCE Convention in Denver, Colorado, 63-77.
Liao, S., and Whitman, R. V.﹙1985﹚Overburden Correction Factors for SPT in Sand, Journal of Geotechnical Engineering, ASCE, Vol. 114, No. GT3, 373–377.
Liu, T. K. (1990) Neotectonic crustal movement in northeastern Taiwan inferred by radiocarbon dating of terrace deposits: Proc. Geol. Soc. China, vol. 33, p. 65-84.
Matheron, G. (1963) Principles of geostatistics: Econ. Geol., vol. 58, p. 1246-1266.
Matsuoka, M., K. Wakamatsu, K. Fujimoto, and S. Midorikawa﹙2006﹚Structral Engineering, JSCE, 23, No.1, 57–68.
McBratney, A. B., and R. Webster (1983) How many observations are needed for regional estimation of soil properties: Soil Society, vol. 135, p177-183.
Mohraz, B.﹙1976﹚A study of earthquake response spectra for different geological conditions, Bulletin of the Seismological Society of America, , 66, 915–935.
Nakamura, Y.﹙1989﹚A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Quarterly Report of Railway Technical Reaserch﹙RTRI﹚, 30, No 1.
Ohta, Y. and N. Goto﹙1978﹚Empirical shear wave velocity equations in terms of characteristic soil index, Earthquake Engineering and Structural Dynamics, 6, 167-187
Park, S., and S. Elrick﹙1998﹚Predictions of shear-wave velocities in southern California using surface geology, Bulletin of the Seismological Society of America, 88, 677–685.
Parkin, T. B.﹙1993﹚Spatial variability of microbial process in soil, Journal of Environmental Quality, 22, 409–417.
Phung, V., G. M. Atkinson, and D. T. Lau﹙2006﹚Methodology for site classification estimation using strong ground motion data from the Chi-Chi, Taiwan, Earthquake, Earthquake Spectra, 22, 511–531.
Schmertmann, J. H.﹙1978﹚Use the STP to measure dynamic soil properties?Yes, but…!, ASTM STP 654, 341-344.
Seed, H. B., C. Ugas, and J. Lysmer﹙1976﹚Site-dependent spectra for earthquake-resistant design, Bulletin of the Seismological Society of America, 66, 221–243.
Sokolov, V. Y., C. H. Loh, and W. Y. Jean﹙2007﹚Application of horizontal-to-vertical (H/V) Fourier spectral ratio for analysis of site effect on rock (NEHRP-class B) sites in Taiwan, Soil Dynamics and Earthquake Engineering, 27, 314-323
Theodulidis, N. P. Y. Bard, R. Archuleta, and M. Bouchon﹙1996﹚Horizontal-to-vertical spectral ratio and geological conditions: the case of Garner Balley downhole array in southern California, Bulletin of the Seismological Society of America, 86,306–319.
Trangmar, B. B., R. S. Yost, and G. Uehara (1985) Application of geostatistics to spatial studies of soil properties: Adv. Agron., vol. 38, p. 45-94.
Wald, D. J., and T. Allen﹙2006﹚Topographic slope as a proxy for seismic site conditions and amplification, Submitted for publication in Bulletin of the Seismological Society of America.
Yamazaki, F., and M. A, Ansary﹙1997﹚Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization, Earthquake Engineering & Structural Dynamics, 26, 671–689.
Yamazaki, F., K. Wakamatsu, J. Onishi, K. T. Shabestari﹙2000﹚Relationship between geomorphological land classification ad site amplification ratio based on JMA strong motion records, Soil Dynamics and Earthquake Engineering, 19, 41–53.
Yates, S.R., and A.W. Warrick (1987) Estimating soil water content using cokriging: Soil Sci. Soc. Am. J., Vol. 51, p. 23-30.
Zare, M., P. Y. Bard, and M. Ghagory-Ashtiany﹙1999﹚Site characterizations for the Iranian strong motion network, Soil Dynamics and Earthquake Engineering, 18, 101–123.
丹桂之助(1939)台北盆地之地質。矢部教授還曆紀念論文集第一卷。
王執明、鄭穎敏、王源(1978)台北盆地之地質及沈積物研究。台灣礦業,第三十卷,第四期,第350-380頁。
江福源(1995)台北盆地地工特性與分析。國立台灣工業技術學院營建工程技術研究所碩士論文,共243頁。
吳偉特(1979)台北盆地土壤之工程特性。中國土木水利工程學會,土木水利,第五卷,第四期,第53-59頁。
吳偉特(1983)台北盆地土壤之剪力模數與阻尼比特性。土木水利季刊,第10卷,第1期,第69-78頁。
吳偉特(1987)台北盆地之演變過程。地工技術,第二十期,第104-112頁。
吳偉特(1988)台北盆地地盤分區土壤之工程特性。地工技術雜誌,第22期,第5-27頁。
李亦亨(1996)使用反射震測法研究台北盆地松山層剪力波速度構造。國立中央大學應用地質研究所碩士論文,共117頁。
李咸亨、吳志明﹙1990﹚台北盆地土壤之動態性質研究﹙III﹚~下井探測法與剪力波速度廻歸分析之探討,行政院國家科學委員會防災科技研究報告79-04號,共157頁。
李錫堤,黃慈銘,廖啟雯 (2002a) 台北盆地松山層土壤性質及剪力波速之空間分析。地工技術雜誌,第90期,第41-54頁。
李錫堤,黃慈銘,廖啟雯,陳宏仁 (2002b) 地下地質資料庫系統的建置與應用-以台北盆地為例。地工技術雜誌,第89期,第13-26頁。
房性中﹙1994﹚標準實入試驗N值應用的比較與探討,共248頁。
林朝宗(2001)台北都會區地質環境。經濟部中央地質調查所,共19頁。
林晉祥、鄧建剛、蘇元安﹙1984﹚有限元素法於開挖分析之應用,臺灣營建研究中心報告,TRA-73006。
洪如江(1966)台北盆地各土壤之物理特性。國立台灣大學工程學刊,第10期,第194-217頁。
洪如江(1993)八十二年度台北盆地地下地質與工程環境綜合調查研究—地層分佈之研究。中央地質調查所報告。
郭鎧紋﹙1992﹚台北都會地區強地動觀測網之地質特性,中央氣象局研究計畫CWB81-1A-10,共77頁。
富國技術工程股份有限公司﹙2002﹚強震儀測站地質鑽探調查工程紀實報告書﹙九十一年度﹚,共68頁。
黃慈銘﹙2000﹚台北盆地松山層土壤性質之空間分析,國立中央大學應用地質研究所碩士論文,共159頁。
黃德乾(1962)台北盆地之松山層。中國地質學會專刊,第一號,第133-151頁。
黃鎮臺(1987)台北市地層大地工程分區研究。地工技術雜誌,第20期,第71-77頁。
廖啟雯(1998)地下地質分散式資料庫建置與應用-以台北盆地為例。國立中央大學應用地質研究所碩士論文,共97頁。
溫國樑、謝宏灝﹙2004﹚強震測站地質鑽探調查,國家地震工程研究中心93年度研究成果報告,第21–24頁。
溫國樑; 謝宏灝﹙2005﹚全國強震測站場址工程地質資料庫之建立,國家地震工程研究中心94年度研究成果報告,第137–140頁。
葉俊岑﹙2001﹚集集地震造成之土壤非線性反應,國立中央大學應用地質研究所碩士論文,共137頁。
寬益工程有限公司﹙2000﹚地質鑽探調查暨液化分析工程成果報告書﹙八十九年度﹚,共23頁。
蔡璧嬬﹙2007﹚臺灣自由場強震站場址分類之進一步研究,國立中央大學應用地質研究所碩士論文,共205頁。
鄭錦桐、廖啟雯、李錫堤、蔡義本﹙2002﹚臺灣地區自由場強震站場址地盤特性分類研究,第七屆臺灣地區地球物理研討會論文集,第115–124頁。
鄧屬予(1994)台北盆地地下地質與工程環境綜合調查研究—地層及沈積環境研究。中央地質調查所報告。
鄧屬予(1995)台北盆地地下地質與工程環境綜合調查研究—地層及沈積環境研究。中央地質調查所報告。
鄧屬予(1996)台北盆地地下地質與工程環境綜合調查研究—地層及沈積環境研究。中央地質調查所報告。
鄧屬予、袁彼得、陳培源、彭志雄、賴典章、林朝宗、費立元、劉桓吉(1996)台北盆地地下地質-新資料新看法,臺灣之第四紀第六次研討會暨台北盆地地下地質與工程環境綜合調查研究成果發表會論文集,第7-10頁。
簡宜如(1995)應用一般與協同克力金法預測土壤性質空間變異之研究。國立臺灣大學農業化學研究所碩士論文,共78頁。
羅俊雄、溫國樑、陳銘鴻、謝宏灝﹙2003﹚全國強震測站場址工程地質資料庫之建立,國家地震工程研究中心92年度研究成果報告,第105–108頁。
指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明