參考文獻 |
[1] Schwartz, F. W., Zhang, H., Fundamentals of Ground Water., John Wiley & Sons, Inc., New York, 2003.
[2] Theis, C.V. “The relation between lowering the piezometric surface and the rate and duration of discharge of a well using groundwater storage”, Tran. Am. Geophys. Union, 2, 519-524, 1935.
[3] Cooper, H. H., and C. E. Jacob, “A generalized graphical method for evaluating formation constants and summarizing well field history”, Tran. Am. Geophys. Union, vol 27, 526-534, 1946.
[4] Yeh, T.C., “Stochastic modeling of groundwater flow and solute transport in aquifers”, Journal of Hydrology, 6, 369-395, 1992.
[5] Yeh, T.C., Scale issues of heterogeneity in vadose-zone hydrology, in Scale Dependence and Scale Invariance in Hydrology, G. Sposito, p. 420, Cambridge University, New York, 1998.
[6] Butler, J. J. Jr., and W. Liu, “Pumping tests in non-uniform aquifers: The radially asymmetric case”, Water Resource Research, 29(2), 259-269, 1993.
[7] Wu, C. M., Yeh, T.C., Zhu,T. H., Lee, N. S., Hsu, C.H., Chen and A. Folch Sancho., “Traditional aquifer tests: Comparing apples to oranges?”, Water Resource Research, 41(9), W09402, doi:10.1029/2004WR003717, 2005.
[8] Gottlieb, J., and P. Dietrich, “Identification of the permeability distribution in soil by hydraulic tomography”, Inverse Problem, 11,353-360, 1995.
[9] Butler, J. J., C. D. McElwee, and G. C. Bohling, “Pumping tests in networks of multilevel sampling wells: Motivation and Methodology”, Water Resource Research, 35(11), 3553-3560, 1999.
[10] Vasco, D. W., H. Keers, and K. Karasaki, “Estimation of reservoir properties using transient pressure data: An asymptotic approach”, Water Resource Research, 36(12), 3447-3465, 2000.
[11] Yeh, T.C., and S. Liu, “Hydraulic tomography: Development of a new aquifer test method”, Water Resource Research, 36(8), 2095-2105, 2000.
[12] Liu, S., T. C. J. Yeh, and R. Gardiner, “Effectiveness of hydraulic tomography: Sandbox experiments”, Water Resource Research, 38(4), doi: 10.1029/2001WR000338, 2002.
[13] Bohling, G. C., X. Zhan, J. J. Butler Jr., and L. Zheng, “Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities”, Water Resource Research, 38(12), doi: 10.1029/2001WR001176, 2002.
[14] McDermott, C. I., M. Sauter, and R. Liedl, “New experimental techniques for pneumatic tomographical determination of the flow and transport parameters of highly fractured porous rock samples”, Journal of Hydrology, 278(1-4), 51-63, 2003.
[15] Brauchler, R., R. Liedl, and P. Dietrich, “A travel time based hydraulic tomographic approach”, Water Resource Research, 39(12), doi: 10.1029/2003/WR002262.
[16] Yeh, W. W-G., “Review of parameter identification procedures in groundwater hydrology: The inverse problem”, Water Resource Research, 22(1), 95-108, 1986.
[17] Kitanidis, P. K., Comment on “A reassessment of the groundwater inverse problem”, Water Resource Research, 33(9), 2199-2202, 1997.
[18] Kitanidis, P. K., and E. G. Vomvoris, “A geostatistical approach to the inverse problem in groundwater modeling and one-dimensional simulations”, Water Resource Research, 19(3), 677-690, 1983.
[19] Hoeksema, R. J., and P. K. Kitanidis, “A application of the geostastical approach to the inverse problem in two-dimensional groundwater modeling”, Water Resource Research, 20(7), 1003-1020, 1984.
[20] Yeh, T. C., M. Jin, and S. Hanna, “An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields”, Water Resource Research, 32(1), 85-92, 1996.
[21] Yeh, T. C., A. L. Gutjahr, and M. Jin, “An iterative cokriging-like technique for groundwater modeling”, Ground Water, 33(1), 33-41, 1995.
[22] Zhang, J., and T. C. Yeh, “An iterative geostatistical inverse method for steady flow in the vadose zone”, Water Resource Research, 33(1), 63-71, 1997.
[23] Hughson, D. L., and T. C. Yeh, “A geostatistically based inverse model for three-dimensional variably saturated flow”, Stochastic Hydrology and Hydraulics, 12(5), 285-298, 1998.
[24] Hughson, D. L., and T. C. Yeh, “An inverse model for three-dimensional flow in variably saturated porous media”, Water Resource Research, 36(4), 829-839, 2000.
[25] van Genuchten, M. T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Science Society of America Journal, 44, 892-898, 1980.
[26] Zhu, J., and T. C. Yeh, “Characterization of aquifer heterogeneity using transient hydraulic tomography”, Water Resource Research, 41(7), 2005.
[27] Liu, X., W. A. Illman, A. J. Craig, J. Zhu, and T. C. Yeh, “Laboratory sandbox validation of transient hydraulic tomography”, Water Resource Research, 43(5), 2007.
[28] Straface, S., T. C. Yeh, J. Zhu, S.Troisi, and C. H. Lee, “Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy”, Water Resource Research, 43, doi: 10.1029/2006WR005287, 2007.
[29] Illman, W.A., X. Liu, and A. Craig, “Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms”, Journal of Hydrology, 341(3-4), 222-234, 2007.
[30] Illman, W.A., X. Liu, and A. Craig, “Practical issues in imaging hydraulic conductivity through hydraulic tomography”, Ground Water, 46(1), 120-132, 2008.
[31] Dettinger, M. D., and J. L. Wilson, “First order analysis of uncertainty in numerical models of groundwater flow”, Water Resource Research, 17(1), 149-161, 1981.
[32] Sykes, J. F., J. L. Wilson, and R. W. Andrews, “Sensitivity analysis of steady state groundwater flow using adjoint operators”, Water Resource Research, 21(3), 359-371, 1985.
[33] Sun, N.-Z., and W. W.-G. Yeh, A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis, Water Resource Research, 28(12), 3269-3280, 1992.
[34] Li, B., and T. C. Yeh, “Sensitivity and moment analysis of head in variably saturated regimes”, Advances in Water Resources, 21, 477-485, 1998.
[35] Gutjar, A., “Fast Fourier transforms for random field generation”, New Mexico Tech project report, 106 pp., Socorro, 1989.
|