博碩士論文 966204012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.133.157.133
姓名 黃奕儒(Yi-Ju Huang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 現地跨孔式抽水試驗推估異質性含水層水文地質特性
(Field-scale cross-hole pumping tests to estimate heterogeneity aquifer hydrogeology properties)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估
★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數★ 沿海含水層異質性對海淡水交界面影響之不確定性分析
★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢
★ 高雄平原地區抽水引致汙染潛勢評估★ 利用自然電位法監測淺層土壤入滲歷程
★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究★ 臺灣西部沿海海水入侵與地下水排出模擬分析
★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析
★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為★ 三維離散裂隙網路水流與溶質傳輸模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水力傳導係數(K)及比儲蓄係數(Ss)為影響地下水流動,地下水污染傳輸以及工程開挖施工等的重要水文地質參數。本研究利用水力剖面探測方法,配合含水層鑿井資料與抽水試驗數據,使用SSLE(sequential successive linear estimator)模式推估K與Ss在空間上較精細的分布。本研究以模式模擬配合現地抽水試驗同時進行,於模式模擬測試例方面,首先利用虛擬含水層之隨機水力傳導係數分布場,進行二維與三維暫態水流流場測試並推估含水層參數,對於SSLE模式的運作過程以及推估結果作概念性地說明,之後為了更進一步了解SSLE模式對不同含水層特性推估時之準確性,本研究對SSLE推估方法進行更深入的評估,透過改變不同生成隨機場的參數,例如改變變異數及x方向之相關長度來比較推估結果,以相同模擬區域及邊界條件,改變水力傳導係數分布場之變異數(0.1, 0.5, 1.0, 2.0),與x方向相關長度(20m, 40m, 60m, 80m),各產生20組隨機水力傳導係數場,再以SSLE模式,針對此不同異質性程度的含水層進行參數推估。結果顯示K值變異性越高則推估的誤差相對提高;在某一相關長度範圍內若有三組以上抽水反應觀測數據,即可以較完整地描述含水層之異質特性。在現地實驗部分,研究場址為高雄縣大寮鄉輔英科技大學地下水井場,利用水力剖面探測方法進行水平跨孔式與垂直跨孔式抽水試驗,藉以得到多組獨立抽水反應資料,以SSLE模式透過資料點在空間上位置結構特性,以及抽水試驗造成之含水層系統反應,分別模擬現地尺度下的K與Ss值在二維與三維空間上的分布情形。模式邊界條件之定水頭假設與現地條件之差異會對推估結果造成高估之影響,但將推估結果與地層資料柱狀圖比較,發現以此模式推估之水力傳導係數分布形態與實際情形大致相符,故此模式可以定性地推估出現地尺度下含水層中水力傳導係數高低分布情形,並能夠幫助了解該場址水文地質參數的空間分布狀況。
摘要(英) Hydraulic conductivity (K) and specific storage coefficient (SS) are key parameters to predict groundwater flow and contaminant transport and to evaluate the stability of excavation sites. This study uses the concept of hydraulic tomography surveys, which integrates the information from direct measurements of aquifer properties and pumping test data to inversely estimate the spatial distributions of hydraulic conductivity (K) and specific storage coefficient (SS) with higher resolution. The inverse model sequential successive linear estimator) SSLE is employed in this study to conduct the inversion of aquifer parameters. This study starts with two synthetic examples (horizontal 2D and vertical 3D cases) to introduce the concept of the SSLE inverse model, and the associated measurement procedures on sites. A variety of cases, including different variances of hydraulic conductivity and correlation lengths in x direction, are used to assess the effect of different degrees of the aquifer heterogeneity on the estimation results. The results indicate that the higher variance of aquifer properties the lower accuracy of the SSLE estimation results. Additionally, three pumping data within a correlation length can well characterize the aquifer heterogeneity. The inverse model is then applied to cross-hole pumping test data obtained from Fooyin University (FU) well field. Base on the concept of hydraulic tomography surveys, such independent pumping test data are then integrated in the inverse model to estimate the 2-D and 3-D spatial distributions of hydraulic conductivity and storage coefficient. Although the specified of constant head boundary condition may not fit well with the conditions on FU site, the estimation results show that the pattern of estimated K distribution agrees well with the well logs obtained from FU site.
關鍵字(中) ★ 水力傳導係數
★ 儲蓄係數
★ 跨孔式抽水試驗
★ 水力剖面探測法
★ 含水層
關鍵字(英) ★ storage coeffic
★ aquifer
★ hydraulic conductivity
論文目次 目 錄
摘要 i
ABSTRACT iii
謝誌 v
目 錄 vi
圖 目 錄 viii
符號說明 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 前人研究 2
1.3 論文結構 8
第二章 資料蒐集與參數分析方法 10
2.1 跨孔式抽水試驗資料蒐集方法 10
2.2 參數分析模式 12
第三章 測試例模擬分析與討論 18
3.1 含水層二維與三維剖面測試例 19
3.2 不同含水層異質性程度之分析 27
第四章 現地尺度跨孔式抽水實驗 31
4.1 實驗場址介紹 31
4.2 實驗流程 34
4.3 實驗結果分析與討論 39
第五章 結論與建議 45
參考文獻 47
參考文獻 [1] Schwartz, F. W., Zhang, H., Fundamentals of Ground Water., John Wiley & Sons, Inc., New York, 2003.
[2] Theis, C.V. “The relation between lowering the piezometric surface and the rate and duration of discharge of a well using groundwater storage”, Tran. Am. Geophys. Union, 2, 519-524, 1935.
[3] Cooper, H. H., and C. E. Jacob, “A generalized graphical method for evaluating formation constants and summarizing well field history”, Tran. Am. Geophys. Union, vol 27, 526-534, 1946.
[4] Yeh, T.C., “Stochastic modeling of groundwater flow and solute transport in aquifers”, Journal of Hydrology, 6, 369-395, 1992.
[5] Yeh, T.C., Scale issues of heterogeneity in vadose-zone hydrology, in Scale Dependence and Scale Invariance in Hydrology, G. Sposito, p. 420, Cambridge University, New York, 1998.
[6] Butler, J. J. Jr., and W. Liu, “Pumping tests in non-uniform aquifers: The radially asymmetric case”, Water Resource Research, 29(2), 259-269, 1993.
[7] Wu, C. M., Yeh, T.C., Zhu,T. H., Lee, N. S., Hsu, C.H., Chen and A. Folch Sancho., “Traditional aquifer tests: Comparing apples to oranges?”, Water Resource Research, 41(9), W09402, doi:10.1029/2004WR003717, 2005.
[8] Gottlieb, J., and P. Dietrich, “Identification of the permeability distribution in soil by hydraulic tomography”, Inverse Problem, 11,353-360, 1995.
[9] Butler, J. J., C. D. McElwee, and G. C. Bohling, “Pumping tests in networks of multilevel sampling wells: Motivation and Methodology”, Water Resource Research, 35(11), 3553-3560, 1999.
[10] Vasco, D. W., H. Keers, and K. Karasaki, “Estimation of reservoir properties using transient pressure data: An asymptotic approach”, Water Resource Research, 36(12), 3447-3465, 2000.
[11] Yeh, T.C., and S. Liu, “Hydraulic tomography: Development of a new aquifer test method”, Water Resource Research, 36(8), 2095-2105, 2000.
[12] Liu, S., T. C. J. Yeh, and R. Gardiner, “Effectiveness of hydraulic tomography: Sandbox experiments”, Water Resource Research, 38(4), doi: 10.1029/2001WR000338, 2002.
[13] Bohling, G. C., X. Zhan, J. J. Butler Jr., and L. Zheng, “Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities”, Water Resource Research, 38(12), doi: 10.1029/2001WR001176, 2002.
[14] McDermott, C. I., M. Sauter, and R. Liedl, “New experimental techniques for pneumatic tomographical determination of the flow and transport parameters of highly fractured porous rock samples”, Journal of Hydrology, 278(1-4), 51-63, 2003.
[15] Brauchler, R., R. Liedl, and P. Dietrich, “A travel time based hydraulic tomographic approach”, Water Resource Research, 39(12), doi: 10.1029/2003/WR002262.
[16] Yeh, W. W-G., “Review of parameter identification procedures in groundwater hydrology: The inverse problem”, Water Resource Research, 22(1), 95-108, 1986.
[17] Kitanidis, P. K., Comment on “A reassessment of the groundwater inverse problem”, Water Resource Research, 33(9), 2199-2202, 1997.
[18] Kitanidis, P. K., and E. G. Vomvoris, “A geostatistical approach to the inverse problem in groundwater modeling and one-dimensional simulations”, Water Resource Research, 19(3), 677-690, 1983.
[19] Hoeksema, R. J., and P. K. Kitanidis, “A application of the geostastical approach to the inverse problem in two-dimensional groundwater modeling”, Water Resource Research, 20(7), 1003-1020, 1984.
[20] Yeh, T. C., M. Jin, and S. Hanna, “An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields”, Water Resource Research, 32(1), 85-92, 1996.
[21] Yeh, T. C., A. L. Gutjahr, and M. Jin, “An iterative cokriging-like technique for groundwater modeling”, Ground Water, 33(1), 33-41, 1995.
[22] Zhang, J., and T. C. Yeh, “An iterative geostatistical inverse method for steady flow in the vadose zone”, Water Resource Research, 33(1), 63-71, 1997.
[23] Hughson, D. L., and T. C. Yeh, “A geostatistically based inverse model for three-dimensional variably saturated flow”, Stochastic Hydrology and Hydraulics, 12(5), 285-298, 1998.
[24] Hughson, D. L., and T. C. Yeh, “An inverse model for three-dimensional flow in variably saturated porous media”, Water Resource Research, 36(4), 829-839, 2000.
[25] van Genuchten, M. T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Science Society of America Journal, 44, 892-898, 1980.
[26] Zhu, J., and T. C. Yeh, “Characterization of aquifer heterogeneity using transient hydraulic tomography”, Water Resource Research, 41(7), 2005.
[27] Liu, X., W. A. Illman, A. J. Craig, J. Zhu, and T. C. Yeh, “Laboratory sandbox validation of transient hydraulic tomography”, Water Resource Research, 43(5), 2007.
[28] Straface, S., T. C. Yeh, J. Zhu, S.Troisi, and C. H. Lee, “Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy”, Water Resource Research, 43, doi: 10.1029/2006WR005287, 2007.
[29] Illman, W.A., X. Liu, and A. Craig, “Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms”, Journal of Hydrology, 341(3-4), 222-234, 2007.
[30] Illman, W.A., X. Liu, and A. Craig, “Practical issues in imaging hydraulic conductivity through hydraulic tomography”, Ground Water, 46(1), 120-132, 2008.
[31] Dettinger, M. D., and J. L. Wilson, “First order analysis of uncertainty in numerical models of groundwater flow”, Water Resource Research, 17(1), 149-161, 1981.
[32] Sykes, J. F., J. L. Wilson, and R. W. Andrews, “Sensitivity analysis of steady state groundwater flow using adjoint operators”, Water Resource Research, 21(3), 359-371, 1985.
[33] Sun, N.-Z., and W. W.-G. Yeh, A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis, Water Resource Research, 28(12), 3269-3280, 1992.
[34] Li, B., and T. C. Yeh, “Sensitivity and moment analysis of head in variably saturated regimes”, Advances in Water Resources, 21, 477-485, 1998.
[35] Gutjar, A., “Fast Fourier transforms for random field generation”, New Mexico Tech project report, 106 pp., Socorro, 1989.
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明