博碩士論文 966204015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.149.239.110
姓名 謝云珺(Yun-chun Sie)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 多深度微水試驗之測試段長度對水力傳導係數影響
(Impact of the tested interval length of the multilevel slug test on the estimation of hydraulic conductivity)
相關論文
★ 微水試驗以兩階段式方法推估薄壁因子與含水層水力導數★ 受負薄壁效應影響微水實驗參數推估方法
★ 單井循環流水力實驗之理論改進與發展★ 地表下NAPL監測技術-薄膜擴散採樣器之發展
★ 水文地層剖析儀與氣壓式微水試驗儀調查淺層含水層水力傳導係數之研究★ Evaluation and management of groundwater resource in Hadong area of Vietnam using groundwater modeling
★ 利用時間分數階移流模式對非反應性示蹤劑在裂隙介質的分析★ 時間分數階傳輸模式對反應性示蹤劑砂箱實驗之分析
★ 利用雙封塞微水試驗推估裂隙含水層水力傳導係數★ 時間分數階徑向發散流場傳輸模式與單一裂隙示蹤劑試驗分析
★ 含水層下邊界對於斜井雙極水流試驗影響★ 大傾角裂隙岩層抽水試驗用雙孔隙率模式分析
★ 裂隙岩層的水流流通面積對跨孔雙封塞 微水試驗資料分析之影響★ 有效井管半徑模式與有限厚度模式對薄壁效應多深度微水試驗之比較
★ 非受壓含水層之三維斜井捕集區解析解★ 利用分布參數方法發展傾斜裂隙岩層 抽水試驗雙孔隙率模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多深度微水試驗(multilevel slug test,MLST)利用單或雙封塞將井篩段區隔使水流僅能從測試段自由進出,更換測試段長度(ls)及封塞位置可獲得該井測試段周圍的水力傳導係數,K(z)。本研究目的探討MLST之測試段長度變化對推估K值的影響;在南部高滲透性砂質含水層井場以固定ls(=0.41m)於26個深度進行MLST,MLSTs之K(z)結果與地層資料柱狀圖比較,與現場地質情形大致符合,因此MLST可有效幫助了解該井場之K值空間上分布狀況。在三個特定深度分別變換5種測試段長度(ls=0.26、0.36、0.41、0.61和0.76m),由分析結果顯示當ls小於一個極限值(本場址ls≦0.41m),水位壓力資料不隨ls變化而改變,已無差異性,代表對垂直異質性變化已不敏感,然而K值推估卻受到形狀因子(F)影響,F與ls成正比,以致K值無法收斂而不相同;建議未來應發展新的形狀因子,當ls越小時F值會收斂趨於一個極限值。此外,本研究之全層貫穿整段井篩長度的平均K值,與幾何、調和、平方及數學等任一種數學平均算法之 比較皆偏小,但由文獻可知全層貫穿整段井篩長度之抽水試驗所推估平均K值卻可代表MLSTs之 ;需要更多研究來解決這項問題。
摘要(英) This study investigates the impact of the tested interval length ls of the multilevel slug test (MLST) on the estimates of hydraulic conductivity, K. In a single well located in a sandy aquifer in southern Taiwan, 26 MLSTs using a constant ls (=0.41 m) were conducted at 26 different depths, respectively. The estimated K(z) agrees well with the geologic interpretation made from core samples. At three specific depths, MLSTs were conducted using five tested screen lengths; i.e., ls = 0.26, 0.36, 0.41, 0.61, and 0.76m. The test responses do not change with ls when ls≦ 0.41m, indicating that the variation of vertical heterogeneity over a relatively small scale (e.g., less than 0.41 m) is insignificant. However, the estimated K(z) varies with ls when ls≦0.41 m, because the shape factor used depends on ls no matter how small ls is. Therefore, there is a need to derive new a shape factor that converges to a limiting value when ls is small. Moreover, Kavg determined using the full screen length is smaller than the geometric, harmonic, quadratic, or arithmetic mean of K(z). That is, Kavg is not representative of a mean value of K(z). This is in contradiction to literature where hydraulic conductivity estimated from a pumping test of a fully screened pumping well represents certain averaged value of K(z) determined from MLSTs. More research is needed to solve this issue.
關鍵字(中) ★ 形狀因子
★ 測試段長度
★ 水力傳導係數
★ 多深度微水試驗
關鍵字(英) ★ tested screen length
★ hydraulic conductivity
★ shape factor
★ multilevel slug test
論文目次 中文摘要 i
英文摘要 ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章 序言 1
1.1 背景 1
1.2 研究動機與目的 11
1.3 論文架構 12
第二章 多深度微水實驗 13
2.1 研究場址介紹 13
2.2 多深度微水實驗操作步驟與方法 17
第三章 多深度微水試驗資料分析 20
3.1 非振盪反應資料分析 21
3.2 振盪反應資料分析 25
3.3 現地多深度微水試驗之實驗流程 28
第四章 MLST結果與討論 36
4.1 雙封塞微水試驗(DPT)結果討論 37
4.1.1 固定測試段長度(ls)移動封塞位置之雙封塞微水試驗(DPT)結果討論 37
4.1.2 固定深度改變測試段長度(ls)之雙封塞微水試驗(DPT)結果討論 42
4.2 單封塞(SPT)與無封塞之微水試驗(NPT)結果討論 52
4.3 多深度微水試驗之垂直平均K值(K(Z) )結果討論 57
第五章 結論與建議 62
參考文獻 64
附錄 68
參考文獻 ﹝1﹞ Hvorslev, M. J., Time lag and soil permeability in ground-water observations., US Army Corps of Engineers, Waterways Experiment Station Bulletin No. 36, Mississippi, USA, 1951.
﹝2﹞ Cooper, H. H. Jr., J. D. Bredehodft, and I. S. Papadopulos, “Response of afinite-diameter well to an instantaneous charge of water ”, Water Resour. Res., 3(1), 263-269, 1967.
﹝3﹞ Bouwer, H., and R. C. Rice, “A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells ”, Water Resour. Res., 12(3), 423-428, 1976.
﹝4﹞ Bedient, P. B., and W. C. Huber, Hydrology and Floodplain Analysis., 3rd ed., New Jersey: Prentice-Hall, 2002.
﹝5﹞ Dagan, G., “A note on packer, slug, and recovery tests in unconfined aquifers ”, Water Resour. Res., 14(5), 929-934, 1978.
﹝6﹞ Hyder, Z., J. J. Butler Jr., C. D. McElwee, and W. Z. Liu, “Slug tests in partially penetrating wells ”, Water Resour. Res., 30(11), 2945-2957, 1994.
﹝7﹞ Van der Kamp, G., “Determining aquifer transmissivity by means of well response test: The underdamped case ”, Water Resour. Res., 12(1), 71-77, 1976.
﹝8﹞ Kipp, K. L. Jr., “Type curve analysis of inertial effects in the response of a well to a slug test ”, Water Resour. Res., 21(9), 1397-1408, 1985.
﹝9﹞ Springer, R. K., and L. W. Gelhar, Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response., Cape Cod, Massachusetts. U.S.Geological Survey Water-Resources Investigations Report 91-4034, 3-40, 1991.
﹝10﹞ Butler, J. J., Jr., The design, performance, and analysis of slug tests., Boca Raton, Florida: Lewis Publishers., 1998.
﹝11﹞ Zurbuchen, B. R., V. A. Zlotnik, and J. J. Butler Jr., “Dynamic interpretation of slug tests in highly permeable aquifers ”, Water Resour. Res., 38(3), 1025, doi:10.1029/200 WR000354 , 2002.
﹝12﹞ Butler, J. J. Jr., and X. Zhan, “Hydraulic tests in highly permeable aquifers ”, Water Resour. Res., 40, doi: 10.1029 / 2003 WR002998, 2004.
﹝13﹞ Chen CS., “An analytical data analysis method for oscillatory slug test ”, Ground Water, 44, 604-608, 2006.
﹝14﹞ Chen, C. S., “ An analytical method of analyzing the oscillatory pressure head measured at any depth in a well casing “, Hydrological Process, 22(8), 1119-1124, 2008.
﹝15﹞ Butler, J. J. Jr., E. J. Garnett, and J. M. Healey, “Analysis of slug tests in formations of high hydraulic conductivity ”, Ground Water 41(5), 620-630, 2003.
﹝16﹞ Widdowson, M. A., F. J. Molz, and J. G. Melville, “An analysis technique for multilevel and partially penetrating slug test data ”, Ground Water, 28(6), 937-945, 1990.
﹝17﹞ Melville, J. G., F. J. Molz, and M. A. Widdowson, “Multilevel slug tests with comparisons to tracer data ”, Ground Water, 29(6), 897-907, 1991.
﹝18﹞ Hinsby, K., P. L. Bjerg, L. J. Andersen, B. Skov, and E.V. Clausen, “A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer ”, Journal of hydrology, 136, 87-106, 1992.
﹝19﹞ Zlotnik, V. A. and V. L. McGuire, “Multi-level slug tests in highly permeable formations:1. Modification of the Springer-Gelhar (SG) model ”, J. Hydrol., 204, 271-282, 1998.
﹝20﹞ Cooper, H. H. Jr., J. D. Bredehoeft, I. S. Papadopulos, and R. R. Bennett, “The response of well-aquifer systems to seismic waves ”, J. Geophys. Res., 70(16), 3915-3926, 1965.
﹝21﹞ Zlotnik, V. A. and B. R. Zurbuchen, “Field study of hydraulic conductivity in a heterogeneous aquifer: Comparison of single-borehole measurements using different instruments ”, Water Resour. Res., 39(4), 1101, doi:10.1029/2002WR001415, 2003.
﹝22﹞ Sellwood, S. M., J. M. Healey, S. Birk, and J. J. Butler Jr., “Direct-push hydrostratigraphic profiling: Coupling electrical logging and slug tests ”, Ground Water, 43(1), 19-29, 2005.
﹝23﹞ Zemansky, G. M. and C. D. McElwee, “High-resolution slug testing ”, Ground Water, 43(2), 222-230, 2005.
﹝24﹞ Ross, H. C., and C. D. McElwee, “Multi-level slug tests to measure 3-D hydraulic conductivity distributions ”, Natural Resources Research, 16(1), 67-79, 2007.
﹝25﹞ Moon, P. and R. W. Whittle, Field theory for engineers., New York, 1961.
﹝26﹞ Ratnam, S., K. Soga, and R. W. Whittle, “Revisiting the Hvorslev’s intake factors using the finite element method”, Géotechnique ,51(7), 641-645, 2001.
﹝27﹞ Mathias, S. A., and A. P. Butler, “An improvement on Hvorslev’s shape factors ”, Geotechnique, 56(10), 705-706, 2006.
﹝28﹞ Mathias, S. A., and A. P. Butler, “Shape factors for constant-head double-packer permeameters ”, Water Resources Research, 43, W06430. doi:0043-1397/07/2006WR005279, 2007.
﹝29﹞ Chen, C. S., and C. R. Wu, “Analysis of depth-dependent pressure head of slug “, Ground Water, 44, 472-477, 2006.
﹝30﹞ Cho, J. S., J. T. Wilson, F. P. Beck Jr., “Measuring Vertical Profiles of Hydraulic Conductivity with In Situ Direct-Push Methods ”, Journal of Environmental Engineering, 126(8), 775-777, 2000.
指導教授 陳家洵(Chia-shiun Chen) 審核日期 2009-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明