博碩士論文 90223001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.15.12.95
姓名 沈育仁(Yu-Zen Shan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 複合高分子電解質結構與電性之研究
(Porous PVDF with LiClO4 complex as solid and wet polymer electrolyte)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性
★ 超分子發光二極體相容性、分子運動性與光性之研究★ 新穎質子交換膜
★ 原位聚合有機無機複合發光二極體 之分散性及光性研究★ 原位聚合固態電解質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要:
高分子電解質主要的研究焦點集中在高分子中摻合不同的化合物或鹽類,其目的是欲增加高分子與離子的運動性,提高整體導電性。除此之外,更能改善高分子的界面穩定性與尺寸安定性。PVDF具有良好的機械性質、高的介電常數及高表面張力,對酸與鹼都有優良的抗腐蝕特性,與現今所使用的高分子複合電極有好的接著性。本研究中以PVDF為高分子母體,加入鋰鹽及酚醛樹酯(Phenolic)形成複合高分子電解質,並藉由FTIR、DSC、TGA、XRD、SEM及CV等儀器探討高分子物理性質、運動性質、結構關係及傳導機制。此外,本研究更開發高分子電解質之新製備方法,即是在PVDF溶液中進行酚醛樹酯聚合,使PVDF與酚醛產生緊密纏繞作用,降低PVDF結晶性。
本研究結果顯示鋰離子之移動主要是在PVDF孔洞間與非結晶區塊進行傳遞,酚醛樹酯加入除了能降低PVDF的結晶度、提高鹽類之解離度,亦能降低PVDF表面張力而改變其孔洞大小及分佈。此結果可以改進電解液之吸附行為,增加與電極界面接著力而降低PVDF與鋰金屬電極之間的界面問題。實驗結果證實我們設計之新型電解質製備方法之可行性,在膠態電解質系統中,酚醛的加入更可減緩鋰金屬上鈍化膜的生成,進而可延長電池使用上的壽命與循環效率。
摘要(英) Abstract
PVDF has good mechanical properties, high dielectric, high surface tension and resistance to acidic and basic corrosion. Porosity and torousity of the film affected the solvent uptake and ion conductivity. Numerous modifications have been explored to improve these properties. This investigation presents a new approach in preparing the solid polymer electrolyte by composite novolac type phenolic with poly (vinylidene fluoride)(PVDF). Both post solvent blending and in-situ approach where phenolic polymerization is achieved in the PVDF solution are performed and compared. The new material shows improved mechanical property and conductivity. Varieties of techniques such as XRD, TGA, SEM, CV and Impedance spectroscopy etc., are performed to evaluate these properties and ion mobility. Our research showed lithium ion transports through both amorphous domain and the surface side of PVDF facing macro-pore. The presence of phenolic in composite PVDF/Li improves conductivity, salt dissociation and decreased PVDF crystallinility. Furthermore, it modifies the dielectric constant, which decreases the surface tension and leads to smaller sol size and distribution in the film formation. As a result of the increased connection with the electrode due to the smaller sol formation, the junction barrier of interface (Lithium and PVDF) is increased. Furthermore, the in-situ preparative methods of the novel composite polymer electrolyte shows improved physical strength, high ionic conductivity suitable for solvent-free electrolyte. Although solvent uptake is hindered due to presence of phenolic, its applications as gel polymer electrolytes (GPE) has demonstrated satisfactory lifetime performance and recycle efficient in Li-ion battery.
關鍵字(中) ★ 聚偏氟乙烯
★ 高分子電解質
★ 酚醛樹酯
關鍵字(英) ★ polymer electrolyte
★ poly(vinylidene fluoride)
★ phenolic
論文目次 目錄 頁次
中文摘要………………………………………………………………..Ⅰ
英文摘要……………………………………………………………….Ⅱ
目錄……………………………………………………………………Ⅲ
表目錄…………………………………………………………………..Ⅵ
圖目錄………………………………………………………………...Ⅶ
第一章 緒論……………………………………………………………1
1-1 前言……………………………………………………………...1
1-2 研究動機………………………………………………………...6
第二章 文獻回顧………………………………………………………8
2-1 電池隔離膜……………………………………………………...8
2-2 高分子電解質………………………………………………….10
2-3 PVDF系高分子電解質………………………………………..19
2-4 水含量的影響………………………………………………….24
2-5 穩定性之研究…………………………………………………...25
2-5-1 尺寸安定性..…………………………………………...25
2-5-2 抗氧化性……………………………………………….26
2-5-3 熱穩定性……………………………………………….26
2-6 界面安定性…………………………………………………….27
2-7 Novolac type酚醛樹酯………………………………………..28
2-7-1 酚醛樹酯的特性……………………………………….28
2-7-2 酚醛樹酯與聚偏氟乙烯摻合之相關研究探討……….30
第三章 實驗技術及原理……………………………………………..32
3-1 樣品製備…………………………………………………….…32
3-1-1 Novolac type酚醛樹酯(Phenolic resin)之合成………..32
3-1-2 固態高分子電解質薄膜之製備 .……………………..33
3-1-3 聚合型(in situ)固態高分子電解質薄膜之製備……….33
3-1-4 膠態高分子電解質薄膜之製備……………………….34
3-1-5 實驗藥品……………………………………………….35
3-2 微差掃瞄熱卡計(Differential Scanning Calorimeter,DSC)…37
3-2-1 DSC實驗操作程序..………………………………….. 38
3-3 熱重量分析儀(Thermo gravimetric analyzer,TGA )……..….38
3-3-1 TGA實驗操作程序…………………………………….38
3-4 傅立葉式紅外線吸收光譜儀(FT-IR)…………………………39
3-4-1 FT-IR實驗操作程序…………………………………...40
3-5 掃瞄式電子顯微鏡(Scanning Electron Microscopy,SEM)….40
3-5-1 SEM實驗操作程序…………………………………….41
3-6 X光射線繞射(X-Ray diffraction)……………………………..41
3-6-1 X光射線繞射實驗操作程序…………………….…….42
3-7 交流阻抗分析儀(AC Impedance)……………………………..43
3-7-1 導電度通常可用下面兩種方法量測………………….43
3-7-2 等效電路(equivalent circuit)…………………………...50
3-7-3 AC-impedance實驗操作程序…………………………53
3-8 電化學穩定度量測………………………………………….…55
3-9 界面性質量測………………………………………………….56
3-10 電池之組裝與充放電性質量測……………………………….57
第四章 結果與討論………………………………………...………...59
4-1 高分子電解質膨潤作用(Swelling study)………………………61
4-2 微差掃瞄熱卡計(DSC)分析 ……………………………….66
4-3 熱重量分析儀(TGA)……………………………………….74
4-4 傅立葉紅外線光譜 ( FT-IR ) 的研究………………………..82
4-5 結晶型態分析………………………………………………….92
4-6 SEM分析……………………………………………………100
4-6-1 PVDF 混摻系統.………………………………………100
4-6-2 混摻聚合(in situ)系統………………………………….103
4-7 導電度分析…………………………………………………...110
4-7-1固態高分子電解質……………………………………...110
4-7-2膠態高分子電解質……………………………………...113
4-7-3聚合型(in situ)高分子電解質…………………………..118
4-7-4高分子電解質活化能之探討.…………………………..122
4-8 電化學穩定度量測 .………………………….……………...125
4-9 界面性質量測 …………………………………………….…130
4-10 電池充放電性質量測…..………………………………….…140
第五章 結論與未來展望……………………………………………143
第六章 參考文獻……………………………………………………146
參考文獻 第六章 參考文獻
(1) 薛立人, “ 二次電池的回顧與展望” , 工業材料雜誌, 88年4月, 第146期.
(2) 林振華, “充電式鋰離子電池-材料與應用”, 90年12月.
(3) 孫清華, “最新可充電電池技術大全”, 90年6月.
(4) 詹益松, “工業材料雜誌”, 90年3月,第171期.
(5) 宋金穎,國立清華大學化學工程學系博士論文,89年6月.
(6) M. Wakihara, Mat. Sci. and Engineering , 2001 , R33, 109.
(7) E. Peled, J. Electrochem. Soc., 1979, 126, 2047.
(8) E. Peled, D. Golodnitsky, G. Ardel, and V. Eshkenazy, Electrochim. Acta., 1995, 40, 2197.
(9) E. Peled, D. Golodnitsky, and G. Ardel, J. Electrochem. Soc., 1997, 144, L208-L210.
(10) Y. Ein-Eli, Electrochem. Solid-State Lett., 1999, 2, 212.
(11) R. Spotnitz, in Handbook of Battery-Materials, J. O. Besenhard, Editor, p.553-563, Wiley-VCH, Weinheim, Germany (1999).
(12) G. Venugopal, J. Moore, J. Howard, S. Pendalwar, J. Power Sources, 1999, 77, 34.
(13) D. E. Fenton, J. M. Parke & P. V. Wright, Polymer, 1973, 14, 589.
(14) M. B. Armand, J. M. Chabagno, and M. Duclot, Second International Meeting solid Electrolytes, Extended Abstract, St. Andrews, Scotland, 1978, September 20-22.
(15) M. Armand, Annu. Rev. Mate, Sci. 1986, 245, 4.
(16) D. F. Shriver, M. A. Ratner, Chem. Rev. 1988, 88, 109.
(17) M. B. Armand, J. M. Chabagno, and M. Duclot, , in Fast Ion Transport in Solids, P. Vashista, J. N. Mundy, and G. K. Shenoy, Editors, p. 131-136, Elsevier, North-Holland, Amsterdam, Netherlands (1979).
(18) P. Discussion, J. Power Sources, 1997, 68, 173.
(19) J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc., 1991, 138, 2859.
(20) J. R. Dahn, U. von Sacken, M. W. Juzkow, and H. Al-Janaby, J. Electrochem. Soc., 1991, 138, 2207.
(21) J. Evans, C. A. Vincent, and P. G. Bruces, Polymer, 1987, 28 , 2324.
(22) P. G. Bruces, M. T. Hardgrave, and C. A. Vincent, Solid state Ionics , 1992, 53-56, 1087.
(23) I. I. Olsen, R. Koksbang, E. Skou, Electrochim. Acta., 1995, 40, 1701.
(24) M. Doyle, T. F. Fuller, and J. Newman, Electrochim. Acta., 1994, 39, 2073.
(25) J. R. MacCallum, C. A. Vincent, Polymer Electrolyte Reviews-1, Elsevier Applied Science, London, UK (1987)
(26) J. R. MacCallum, C. A. Vincent, Polymer Electrolyte Reviews-2, Elsevier Applied Science, London, UK (1989)
(27) C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud, Solid State Ionics, 1983, 11, 91.
(28) R. Borkowska, J. Laskowski, J. Plocharski, J. Przyluski, and W. Wieczorek, J. Appl. Electrochem., 1993, 23, 991.
(29) M. Watanabe, M. Kanba, H. Matsuda, K.. Mizoguchi, I. Shinohara, E. Tsuchida, and K. Tsunemi, Makromo. Chem.-Rapid. Commun., 1981, 2, 741.
(30) M. Watanabe, M. Kanba, K. Nagaoka, I. Shinohara, J. Appl. Electrochem., 1982, 27, 4191.
(31) M. Watanabe, M. K.anba, K. Nagaoka, and I. Shinohara, J. Polym. Sci. : Polym. Phys. Edit., 1983, 21, 939.
(32) K. M. Abraham, M. Alamgir, J. Electrochem. Soc., 1990, 137, 1657.
(33) K. M. Abraham, M. Alamgir, U.S. Patent, 1993, No.5, 219, 679.
(34) F. Croce, F. Gerace, G. Dautzenberg, S. Passerini, G. B. Appetecchi, B. Scrosati, Electrochim. Acta., 1994, 39, 2187.
(35) S. Slane, M. Salomon, J. Power Sources, 1995, 55, 7.
(36) G. Dautzenberg, F. Croce, S. Passerini, B. Scrosati, Chem. Mater., 1994, 6, 538.
(37) D. Peramunage, D. M. Pasquariello, K. M. Abraham, J . Electrochem. Soc., 1995, 142, 1789.
(38) H. S. Choe, B. G. Carroll, D. M. Pasquariello, K. M. Abraham, Chem. Mater., 1997, 9, 369.
(39) F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane, M. Salomon, Chem. Mater., 1993, 5, 1268.
(40) Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, L. Chen, J. Electrochem. Soc., 1997, 144, 778.
(41) Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Solid State Ionics, 1999, 121, 141.
(42) K. M. Abraham, H. S. Choe, D. M. Pasquariello, Electrochim. Acta., 1998, 43, 2399.
(43) T. lijima, Y. Toyoguchi, N. Eda, Denki Kagaku, 1985, 53, 619.
(44) O. Bohnke, C. Rousselot, P. A. Gillet, C. Truche, J. Electrochem. Soc., 1992, 139, 1862.
(45) O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, C. Truche, Solid State Ionics, 1993, 66, 97.
(46) G. B. Appetecchi, F. Croce, B. Scrosati, Electrochim. Acta. , 1995, 40, 991.
(47) X. Liu and T. Osaka, J. Electrochem. Soc., 1997, 144, 3066.
(48) E. Quartarone, C. Tomasi, P. Mustarelli, G. B. Appetecchi, F. Croce, Electrochim. Acta. , 1998, 43,1435.
(49) G. Pistoia, A. Antonini, G. Wang, J. Power Sources, 1996, 58, 139.
(50) H. Y. Sung, Y.Y. Wang, C. C. Wan, J. Electrochem. Soc., 1998, 145, 1207.
(51) Y. Y. Wang, C. C. Wan, H. Y. Sung, U.S. Patent No.5, 1999, 874, 185.
(52) S. Rajendran, T. Uma, J. Power Sources, 2000, 87, 218.
(53) E. Tsuchida, H. Ohno, K. Tsunemi, Electrochim. Acta, 1983, 28, 591.
(54) K. Tsuchida, H. Ohno, E. Tsuchida, Electrochim. Acta, 1983, 28, 833.
(55) A, S. Gozdz, C. N. Schmutz, J. M. Tarascon, U.S. Patent No.5, 1994, 296, 318.
(56) A. S.Gozdz, C. N. Schmutz, J. M. Tarascon, P.C. Warren, U. S. patent No.5, 1995, 418, 91.
(57) A. S. Gozdz, J. M. Tarascon, and P. C. Warren, U.S. Patent No.5, 1995, 460, 904.
(58) J. M. Tarascon, A. S. Gozdz, C. N. Schmutz, F. Shokoohl, P. C. Warren, Solid State Ionics, 1996, 86-88, 49.
(59) Z. Jiang, B, Carroll, and K. M. Abraham, Electrochim. Acta, 1997, 42, 2667.
(60) P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, T. Sakai. Y. Saito, M. Mizuhata, A. Kajinanii, S. Deki, Solid State lonics, 1999, 126, 285.
(61) G. B. Appetecchi, F. Croce, A. De Paolis, B. Scrosati, J. Electroanal. Chem., 1999, 463, 248.
(62) A. M. Voice, G. R. Davies, I. M. Ward, Polym. Gels Networks, 1997, 5, 123.
(63) P. Mustarelli, E. Quartarone, C. Capiglia, C. Tomasi, A. Magistris, Solid State lonics, 1999, 122, 285.
(64) I. M. Ward, M. .I. Wilhamson, H. V. St. A. Hubbard, J. P. Southall, G. R. Davies, J. Power Sources, 1999, 81-82, 700.
(65) P. E. Stallworth, J. J. Fontanella, M. C. Wintersgill, C. D. Scheidler. J. J. Immel, S. G. Greenbaum, A. S. Gozdz, J. Power Sources, 1999, 81-82, 739.
(66) V. Arcella, A. Sanguineti, E. Quartarone, P. Mustarelli, J. Power Sources, 1999, 81-82, 790.
(67) F. Boudin, X. Andrieu, C. Jehoulet, I. I. Olsen, J. Power Sources, 1999, 81-82, 804.
(68) C. Capiglia, Y. Saito, H. Yamamoto, H. Kageyama, P. Mustarelli, Electrochim. Acta, 2000, 45, 1341.
(69) Y. Saito, C. Capiglia, H. Yamamoto, and P. Mustarelli, J. Electrochem. Soc., 2000, 147, 1645.
(70) T. Michot, A. Nishimoto, M. Watanabe, Electrochim. Acta, 2000, 45, 1347.
(71) J. Y. Song, Y. Y. Wang, C. C. Wan, J. Power Sources, 1999, 77, 183.
(72) L. H. Sperling, “Introduction to Physical Polymer Science”, 2nd ed., p.382-457, John Wiley & Sons, New York, USA (1993).
(73) H. S. Choe, J. Giaccai, M. Alamgir, K. M. Abraham, Electrochim. Acta., 1995, 40, 2289.
(74) H. Kataoka, Y. Saito, T. Sakai, J. Phys. Chem. B , 2000, 104, 11460.
(75) C. R. Jarvis, W. J. Macklin, A. J. Macklin,N. J. Mattingley, E. Kronfli, J. Power Sources , 2001, 97-98, 664.
(76) K. M. Abraham. Z. Jiang, and B. Carroll, Chem. Mater., 1997, 9, 1978.
(77) C. S. Kim, S. M. Oh, Electrochim. Acta , 2001, 46, 1323.
(78) Jean. Li, Khan, M. Ishrat, Macromolecules, 1993, 26, 4544.
(79) G. T. K. Fey, W. Li, J. R. Dahn, J. Electrochem. Soc., 1994, 141, 2279.
(80) R. D. Armstrong, M. D. Clarke, Solid State Ionics. 1984, 11, 305.
(81) C. C. Hunter, D. C. Silnclair, A. R. West, J. Power Sources. 1988, 24, 157.
(82) H. Hong, C. Liguan, H. Xuejie, Electrochim. Acta., 1992, 37, 1671.
(83) F. Croce, B. Scrosati, J. Power Sources, 1993, 9, 43 .
(84) J. T. Mottram, B. Geary, R. Taylor, Journal of Material Science, 1992, 27.
(85) H. D. Wu, C. C. Ma, M. S. Li, Y. F. Su, Y. D. Wu, Composites, Part A: Appl. Sci. Manu. 1997, 28A, 895.
(86) J. F. Rabek, “Experimental Methods in Polymer Chemistry”, New York, 1980 .
(87) A. S. Douglas, J. L. James, “Principles of Instrumental Analysis” , Fourth Edition Chap. 23.
(88) R. M. Silverstein, F. X. Webster, “Spectrometric Identification of Organic”, 1963.
(89) J. G. Webster, “Eelctrical Impedance Tomography”, Adam Hilger, Bristol, 1990.
(90) “Basics on AC Impedance Measurements”, Application Note AC-1. Available upon request from EG&G Princeton Applied Research, Electrochemical Instruments Division.
(91) M. M. E. Jacob, A. K. Arof, Electrochimica Acta, 2000, 45, 1701.
(92) S. Rajendran, O. Mahendran, R. Kannan, Fuel, 2002, 81, 1077.
(93) S. Rajendran, O. Mahendran, T. Mahalingam, European Polymer Journal , 2002, 38, 49.
(94) Q. Gao, J. I. Scheinbeim, Macromolecules, 2002, 33, 7564.
(95) Y. Zhao, M. W. Urban, Langmuir, 1999, 15, 3538.
(96) D. C. Basett, Developments in Crystalline Polymer I , 1982 , chap.5
指導教授 諸柏仁(Peter P. Chu) 審核日期 2003-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明