以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:57 、訪客IP:18.223.209.129
姓名 洪詩惠(Shih-Hui Hung) 查詢紙本館藏 畢業系所 化學學系 論文名稱 掃描式電子穿隧顯微鏡研究硫、錫及己烷基雙硫醇分子在銅(100)電極上的表面結構
(The structure of Sulfide, Tin and 1,6-Hexanedithiol Overlayers on Cu(100) Electrode: An In Situ Scanning Tunneling Microscopy Study)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 摘要
本論文分為三個部分,第一部分研究在鹽酸及硫酸中,硫離子於銅(100)電極上的吸附情形:硫離子在酸性溶液中以HS-形式吸附於銅(100)電極上,由於吸附位向不同使表面原子顯現週期性的波浪起伏(moiré pattern),結構為p(3?2 × 12?2)R45°,覆蓋度為0.305。在硫酸中隨電位的增加,硫離子的覆蓋度增加而形成硫原子團,然而在鹽酸中並無此結構形成,推測在鹽酸中氯離子可促進銅載體的溶解,使硫離子無法聚集形成硫原子團。硫離子在銅(100)電極上的吸附導致載體的重構,由於載體為紓解因硫離子吸附所產生的應力,將釋出部份銅原子而沉積於電極上形成島狀物,然而這些島狀物上仍然有硫離子的吸附,此重構現象導致銅(100)電極表面的粗糙化。
第二部分觀察在鹽酸及硫酸中,錫於銅(100)電極上的沉積:在鹽酸中,高規則度之氯離子吸附層,在電極上對於錫的沉積具有引導作用,錫沿著氯離子的密排方向沉積於銅(100)電極表面,首先形成Cu2Sn3的合金態,其結構為p(3?2 × ?2)R45°,由於銅錫原子間的立體效應,銅原子持續釋出,形成第二種合金態CuSn2,其結構為p(2?2 × ?2)R45°,當表層銅原子完全釋出,則形成(?2 × ?2)R45°的去合金態,覆蓋度為0.5。合金態轉變為去合金態的過程中,釋出的銅原子將再沉積於電極表面,此時錫的沉積由二維轉三維。硫酸中錫的沉積,由於缺乏氯離子的引導,錫原子間的作用力明顯大於載體與錫原子間的作用力,因此在硫酸中,錫的沉積以三維模式進行。
第三部分觀察1,6-己烷基雙硫醇分子在鹽酸中於銅(100)電極上的吸附情形:此雙硫醇分子在銅(100)電極上的吸附,以一端硫離子與電極鍵結,形成”之字形” 分子鏈狀結構(“zig-zag” chains),簡單定義其單位晶格結構為c(6 × 2),覆蓋度約0.33,然而”之字形” 鏈狀結構間的緊密程度卻有差異,隨時間並未觀察到其他規則的吸附結構。我們推測1,6-己烷基雙硫醇分子以一端硫離子與銅(100)電極進行鍵結,與表面傾斜某一角度,”之字形” 分子鏈狀結構可能來自於此一分子形成雙硫分子吸附於銅電極上。1,6-己烷基雙硫醇分子在銅(100)電極表面的吸附並無造成載體腐蝕或重構的現象。摘要(英) Abstract
In-situ electrochemical scanning tunneling microscope (EC-STM) has been used to examine layers of chloride and sulfide adlayers on ordered Cu(100) electrode surfaces. The adsorption of chloride anions from hydrochloric acid solutions, results in the formation of a well ordered c(2 × 2)-Cl adlayer and step faceting in the <100> directions of Cu(100). The adsorption of sulfide has been examined either in 0.1 M HCl or H2SO4, a moiré pattern of p(3?2 × 12?2)R45° with a coverage of 0.305 has been consistently observed between the potential range from -0.15 to 0 V. The atomic row of sulfur along the <100> direction was highly “buckled”. At positive potentials, the sulfide adlayers were gradually oxidized to form S8-like clusters in H2SO4, but such sulfur clusters were not found in HCl solutions. This difference was large associated with the existence of chloride anions. Sweeping potential positively initiated a phase transition of not only the adsorbate layer but also the substrate, thus the entire surface morphology was altered. Square and rectangular ad-islands and vacancy islands were produced, leading to a severe roughing of the copper substrate.
In-situ STM was used to study Sn electrodeposition on Cu(100) in sulfuric acid solution. Nucleation of Sn seeds electrodepositon of Sn proceeded in a 3D growth mode (Volmer-Weber growth mode), as the Cu surface appeared to be rough. However, electrodeposition of Sn in hydrochloric acid solutions yielded p(3?2 × ?2)R45° and p(2?2 × ?2)R45° ordered surface structures. These structures are likely due to surface alloy phases, where rows of Cu and Sn adatoms differ by ca. 25%, a strain exists in the alloyed phase, and the strain is released by both lateral relaxation and bucklings within the layers. Finally, continuous deposition of Sn displaced Cu atoms in the uppermost layer, causing de-alloy and transform the ordered structure to (?2 × ?2)R45° with a coverage of 0.5.
High resolution STM images were used to unravel the real-space structure of 1,6-Hexanedithiol (HDT) on well-ordered Cu(100) electrode in 0.1 M HCl. HDT seems to be strongly adsorbed on Cu(100), resulting in displacement of chloride with HDT molecules. STM revealed the transition from (?2 × ?2)R45° to local c(6 × 2). The latter likely associated with the adsorption of HDT, exhibiting zig-zag chains aligned along the <110> directions. Two neighboring protrusions within the zig-zag pattern are ca. 3.6 Å apart. This structure is tentatively attributed to the formation of sulfide molecules which are adsorbed vertically through the sulfur head-groups.關鍵字(中) ★ 掃描式電子穿隧顯微鏡
★ 銅(100)關鍵字(英) ★ Cu(100)
★ STM論文目次 目錄
中文摘要………………………………………………………………..Ⅰ
英文摘要……………………..................................................................Ⅲ
謝誌..........................................................................................................Ⅴ
目錄..........................................................................................................Ⅵ
圖目錄…………………………………………………………………..Ⅸ
表目錄………………………………………………………………..ⅩⅡ
第壹章、 緒論……………………………………………………………1
1-1 前言………………………………………………………………….1
1-1-1 銅金屬之發展…………………………………………………..1
1-2 陰離子特異性吸附………………………………………………….2
1-3 硫銅化合物的應用………………………………………………….3
1-4 工業上錫鬚的問題………………………………………………….4
1-5 低電位沉積的介紹…………………………………...……………..5
1-6 金屬的沉積模式…………………………………………………….5
1-7 自組裝技術的簡介………………………………………………….6
1-8 相關文獻探討……………………………………………………….7
1-8-1 硫在金屬電極的吸附研究……………………………………..7
1-8-2 銅錫合金系統的表面研究……………………………………..9
1-8-3 硫醇分子在金屬電極上的研究………………………………10
第貳章、 實驗部分……………………………………………………..12
2-1 藥品部分…………………………………………………………...12
2-2 氣體部分…………………………………………………………...12
2-3 金屬部分…………………………………………………………...12
2-4 儀器部分…………………………………………………………...13
2-5 實驗步驟…………………………………………………………...14
第參章、 銅(100)電極吸附硫的結果與討論………………………….17
3-1 銅(100)電極在鹽酸系統中吸附硫的研究………………………..17
3-1-1 銅(100)電極在鹽酸溶液的CV及STM圖像………………..17
3-1-2 銅(100)電極在鹽酸中吸附硫的CV圖………………………19
3-1-3 銅(100)電極在鹽酸中吸附硫的STM圖像…………………..21
3-1-4 銅(100)電極在鹽酸中吸附硫的結論………………………...23
3-2 銅(100)電極在硫酸中吸附硫的研究……………………………..24
3-2-1 銅(100)電極在硫酸中的CV及STM圖像…………………...24
3-2-2 銅(100)電極在硫酸中吸附硫的CV圖………………………26
3-2-3 銅(100)電極在硫酸中吸附硫的STM圖像…………………..26
3-2-4 銅(100)電極在硫酸中吸附硫的結論………………………...30
3-3 銅(100)電極在鹽酸及硫酸系統吸附硫的結論…………………..30
第肆章、銅(100)電極在鹽酸及硫酸中錫沉積的結果與討論………..32
4-1 銅(100)電極在鹽酸系統中鍍錫的研究…………………………..32
4-1-1 銅(100)電極在鹽酸系統中鍍錫的CV圖……………………32
4-1-2 銅(100)電極在鹽酸系統中鍍錫的STM圖像………………..32
4-1-3 銅(100)電極在鹽酸系統中鍍錫的結論……………………...37
4-2 銅(100)電極在硫酸系統中鍍錫的研究…………………………..38
4-2-1 銅(100)電極在硫酸系統中鍍錫的CV圖……….…………...38
4-2-2 銅(100)電極在硫酸系統中鍍錫的STM圖像………………..39
4-2-3 銅(100)電極在硫酸系統中鍍錫的結論……………………...40
4-3 銅(100)電極在鹽酸及硫酸系統鍍錫的結論……………………..41
第伍章、銅(100)電極吸附1,6-己烷基雙硫醇分子之結果與討論……43
5-1 銅(100)電極吸附1,6-己烷基雙硫醇分子之CV圖......................43
5-2 銅(100)電極吸附1,6-己烷基雙硫醇分子之STM圖...................43
5-3 銅(100)電極吸附1,6-己烷基雙硫醇分子之結論........................47
第陸章、參考文獻....................................................................................48
圖目錄
圖1. 太陽能電池的發電原理………………………………………….53
圖2. 以銅金屬為載體的錫鬚示意圖………………………………….54
圖3. 錫鬚的動力學及熱力學關係…………………………………….54
圖4. 金屬沉積層的三種成長機制…………………………………….55
圖5. 自組裝薄膜的示意圖…………………………………………….56
圖6. 銅(100)電極的前處理步驟………………………………………57
圖7. CV及STM的實驗裝置圖………………………………………..58
圖8. 銅(100)電極在0.1 M鹽酸中的CV圖…………………………..59
圖9. 銅(100)電極在0.1 M鹽酸之STM圖…………………………...60
圖10. 正電位時,銅(100)電極溶解的連續變化圖……………………61
圖11. 銅(100)電極在鹽酸中含1 mM Na2S之CV圖………………..62
圖12. 硫在銅(100)電極表面吸附之STM圖…………………………63
圖13. 硫離子的吸附導致電極表面形成缺陷………………………...64
圖14. 硫離子在銅(100)電極的吸附…………………………………..65
圖15. 硫離子在銅(100)電極的吸附結構-p(3?2 × 12?2)R45°.............66
圖16. 硫離子取代氯離子吸附在銅電極上的STM圖……………….67
圖17. 銅在電極表面重構形成島狀物………………………………...68
圖18. 銅(100)電極在0.1 M硫酸中的CV圖…………………………69
圖19. 銅(100)電極在硫酸中的STM圖像…………………………….70
圖20. 銅(100)電極在硫酸中平台及台階隨時間之連續變化圖.......................................................71
圖21. 銅(100)電極在硫酸中含1 mM Na2S之CV圖…………………72
圖22. 銅(100)電極吸附硫離子所形成的moiré pattern...…………….73
圖23. moiré pattern的原子吸附結構- p(3?2 × 12?2)R45°…….…….74
圖24. moiré pattern隨覆蓋度增加形成硫原子團的吸附結構……….75
圖25. 硫在銅島狀物上的吸附情形…………………………………...76
圖26. 負電位時硫在銅島狀物上的脱附情形………………………...77
圖27. 銅島狀物隨電位的改變………………………………………...78
圖28. 銅(100)電極在0.1 M鹽酸中錫沉積之CV圖............................79
圖29. 銅(100)電極在鹽酸中錫沉積之連續變化圖…………………..80
圖30. 錫沉積造成台階邊緣改變的連續變化圖……………………...81
圖31. 錫在銅(100)電極的沉積結構- p(3?2 × ?2)R45°- Cu2Sn3…..…82
圖32. Cu2Sn3合金態結構之剖面圖……………………………………83
圖33. Cu(100)-p(3?2 × ?2)R45°-Sn的橫切面原子示意圖…………...84
圖34. 利用Pendry’s RR-method計算Cu2Sn3合金態模型…………..85
圖35. 錫在銅(100)電極的沉積結構- p(2?2 × ?2)R45°- CuSn2……...86
圖36. CuSn2合金態結構之剖面圖…………………………………….87
圖37. Cu(100)-p(2?2 × ?2)R45°-Sn的橫切面原子示意圖………….88
圖38. 錫在銅(100)電極的沉積結構- (?2 × ?2)R45°………………..89
圖39. CuSn2合金態去合金的轉變過程……………………………….90
圖40. 銅(100)電極在0.1 M硫酸中錫沉積之CV圖…………………91
圖41. 硫酸中錫在銅(100)電極上的三維沉積………………………..92
圖42. 錫沉積在硫酸中經氯修飾後的比較…………………………...93
圖43. 銅(100)電極在含10-5 M 1,6-己烷基雙硫醇的鹽酸中之CV圖.........................................................94
圖44. 1,6-己烷基雙硫醇分子在銅(100)電極之STM圖……………..95
圖45. 1,6-己烷基雙硫醇分子在銅(100)電極之高解析STM圖……..96
圖46. 1,6-己烷基雙硫醇分子吸附結構與原子模型圖……………….97
圖47. 1,6-己烷基雙硫醇分子在銅(100)電極上的複雜結構………….98
表目錄
表1. 低電阻率導電材料(Ag、Cu、Au、Al、W等)之物理特性……53參考文獻 第陸章、參考文獻
1.Vogt, M. R.; Lachenwitzer, A.; Magnussen, O. M.; Behm, R. J. Surf. Sci. 1998, 399, 49.
2.Koch, D. F. A.; McIntyre, R. J. J.Electroanal. Chem. 1976, 71, 285.
3.NASA Goddard Space Flight Center Tin Whisker (and Other Metal Whisker) Homepage . http://nepp.nasa.gov/whisker/index.html
4.Compton, K. G.; Mendizza, A.; Arnold, S. M. Corrosion 1951, 7, 327.
5.Endo, M.; Higuchi, S.; Tokuda, Y.; Sakabe, Y. Elimination of whisker growth on tin plated electrodes. in International Symposium for Testing and Failure Analysis proceedings, 1997,305.
6.Brusse, J. A.; Ewell, G. J.; Siplon, D. P. Tin Whiskers: attributes and mitigation. in 16th Passive components Symposium, 2002.
7.Cunningham, K. M.; Donahue, M. P. Tin Whisker: mechanism of growth and prevention. in 4th International SAMPE Electronics Conference, 1990.
8.Lee, B. Z.; Lee, D. N. Acta. Mater. 1998, 46, 3701.
9.Budevski, E.; Staikov, G.; Lorentz, W. J. Electrochemical Phase
Formation and Growth. VCH Publisher: New York, 1996.
10.Adzic, R. R. in Advances in Electrochemistry and Electrochemical
Engineering. 1984, 13, 159.
11.Lucas, C. A.; Markovic, N. M.; Ross, P. N. Experi. Prog. Rep. 1997, 7, 374.
12.MacLaren, J. M.; Pendry, J. B.; Rous, P. J. Surface Crystallogrphic
Information Service. Reidel: Dordrecht, 1987.
13.Rodriguez, J. A. Surf. Sci. Rep. 1996, 24, 223.
14.Rodriguez, J. A.; Goodman, D. W. J. Phys. Chem. 1991, 95, 4196.
15.Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. J. Colloid Interface. Sci. 1946, 1, 513.
16.Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
17.Decher, G.; Hong, J. D.; Schmit, J. Thin Solid Films 1992, 210-211, 831.
18.Yoon, H. A.; Materer, N.; Salmeron, M. A. Surf. Sci. 1997, 376, 254.
19.Yoon, H. A.; Salmeron, M. A.; Somorjai, G. A. Surf. Sci. 1998, 395, 268.
20.Maurice, V.; Kitakatsu, N.; Seigers, M.; Marcus, P. Surf. Sci. 1997, 373, 307.
21.Bömermann, J.; Huck, M.; Kuntze, J. Rauch, T.; Speller, S.; Heiland, W. Surf. Sci. 1996, 357-358, 849.
22.Speller, S.; Rauch, T.; Bömermann, J.; Heiland, W. Surf. Sci. 1999, 441, 107.
23.Domange, J. L.; Ouder, J. Surf. Sci. 1968, 11, 124.
24.Ruan, L.; Stensgaard, I.; Besenbacher, F.; Jensen, F.; Lægsgaard, E. Ultramicroscopy 1992, 42-44, 498.
25.Foss, M.; Feidenhans’l, R.; Nielsen, M.; Findeisen, E.; Buslaps, T.; Johnson, R. L.; Besenbacher, F. Surf. Sci. 1997, 388, 5.
26.Wahlström, E.; Ekvall, I.; Olin, H.; Lindgren, S.; Walldén, L. Phys. Rev. B 1999, 60, 10699.
27.Vericat, C.; Andreasen, G.; Vela, M. E.; Salvarezza, R. C. J. Phys. Chem. B 2000, 104, 302.
28.Gao, X.; Zhang, Y.; Weaver, M. J. J. Phys. Chem. 1992, 96, 4156.
29.Sugimasa, M.; Inukai, J.; Itaya, K. J. Electrochem. Soc. 2003, 150, E110.
30.Wang, D.; Xu, Q. M.; Wan, L. J.; Wang, C.; Bai, C. L. Surf. Sci. 2002, 499, L159.
31.Zeng, H. C.; McFarlane, R. A.; Mitchell, K. A. R. Phys. Rev. B 1989, 39, 8000.
32.Bahr, C. C.; Barton, J. J.; Hussain, Z.; Robey, S. W.; Tobin, J. G.; Shirley, D. A. Phys. Rev. B 1987, 35, 3773.
33.Colaianni, M. L.; Chorkendorff, I. Phys. Rev. B 1994, 50, 8798.
34.Driver, S. M.; Woodruff, D. P. Surf. Sci. 2001, 479, 1.
35.Safarowsky, C.; Spaenig, A.; Broekmann, P.; Wandelt, K. Surf. Sci. 2003, 538, 137.
36.Vogt, M. R.; Moller, F. A.; Schilz, C. M.; Magnussen, O. M.; Behm, R. J. Surf. Sci. 1996, 367, L33.
37.Suggs, D. W.; Bard, A. J.; J. Phys. Chem. 1995, 99, 8349.
38.Nakakura, C. Y.; Zheng, G.; Altman, E. I. Surf. Sci. 1998, 401, 173.
39.Fishlock, T. W.; Pethica, J. B.; Egdell, R. G. Surf. Sci. 2000, 445, L47.
40.Alcock, N. W. Bonding and Structure. Ellis Horwood. 1990.
41.Dyson, B. F.; Anthony, T. R.; Turnbull, D. J. Appl. Phys. 1967, 38, 3408.
42.Argile, C.; Rhead, G. E. Thin Solid Films 1982, 87, 265.
43.Abel, F.; Cohen, C.; Davies, J. A.; Moulin, J.; Schmaus, D. Appl. Surf. Sci. 1990, 44, 17.
44.McLoughlin, E.; Cafolla, A. A.; AlShamaileh, E.; Barnes, C. J. Surf. Sci. 2001, 482-485, 1431.
45.Cafolla, A. A.; McLoughlin, E.; AlShamaileh, E.; Guaino, P.; Sheerin, G.; Carty, D.; McEvoy, T.; Barnes, C.; Dhanak, V.; Santoni, A. Surf. Sci. 2003, 544, 121.
46.Pussi, K.; Alshamaileh, E.; McLoughlin, E.; Cafolla, A. A.; Lindroos, M. Surf. Sci. 2004, 549, 24.
47.Fenter, P.; Eisenberger, D.; Liang, K. S. Phys. Rev. Lett. 1993, 70, 2447.
48.Poter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559.
49.Poirier, G. E.; Tarlov, M. J.; Rushmeier, H. E. Langmuir 1994, 10, 3383.
50.Poirier, G. E.; Tarlov, M. J. J. Phys. Chem. 1995, 99, 10966.
51.Poirier, G. E. Chem. Rev. 1997, 97, 1117.
52.Vollmer, S.; Witte, G.; Wöll, C. Langmuir 2001, 17, 7560.
53.Kondoh, H.; Saito, N.; Matsui, F.; Yokoyama, T.; Ohta, T. J. Phys. Chem. B 2001, 105, 12870.
54.Rieley, H.; Kendall, G. K.; Zemicael, F. W.; Smith, T. L.; Yang, S. Langmuir 1998, 14, 5147.
55.Cavallini, M.; Bracali, M.; Alosi, G.; Guidelli, R. Langmuir 1999, 15, 3003.
56.Moffat, T. P. Mater. Res. Soc. Symp. Proc. 1997, 451, 75.
57.Tacconi, N. R.; Rajeshwar, K.; Lezna, R. O. J. Phys. Chem. 1996, 100, 18234.
58.AlShamaileh, E.; Pussi, K.; McEvoy, T.; Lindroos, M.; Hughes, G.; Cafolla, A. A. in ECOSS-22, Surf. Sci. in press.
59.Gauthier, Y.; Moritz, W.; Hösler, W. Surf. Sci. 1996, 345, 53.
60.AlShamaileh, E.; Barnes, C. Phys. Chem. Chem. Phys. 2002, 4, 5148.
61.Scherer, J.; Vogt, M. R.; Magnussen, O. M.; Behm, R. J. Langmuir 1997, 13, 7045.
62.Vollmer, S.; Witte, G.; Wöll, C. Langmuir 2001, 17, 7560.指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2004-7-1 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare