以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:34 、訪客IP:18.191.9.9
姓名 楊曜嘉(Yaw-Chia Yang) 查詢紙本館藏 畢業系所 化學學系 論文名稱 掃描式電子穿隧顯微鏡研究有機硫醇、硝酚及氟酚分子在鉑(111)上之吸附結構
(In-site STM Study of Organosulful、Nitrophenol and Fluorophenol Molecules Adsorbed on a Pt(111) Electrode)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 摘要
Ⅰ.芳香基硫醇分子於鉑(111)電極上的吸附:
(a)苯硫酚(Benzenethiol)的吸附結構
藉由掃描式電子穿隧顯微鏡(STM)觀察芳香基硫醇分子在鉑(111)電極上,於固定電位下苯硫酚分子吸附層的結構。於0.1 ~ 0.3 V電位區間形成規則之吸附結構,其排列方式和苯硫酚濃度有關,在10 ?M以下,苯硫酚分子形成覆蓋度為0.25的(2 × 2)吸附結構,當濃度提升到100 ?M時,覆蓋度增加至0.33,而結構轉變為(?3 × ?3)R30°。當電位調至0.6 V後,這些規則之吸附結構轉變為不規則的吸附,此一結構的轉變為不可逆。苯硫酚分子以其硫端與鉑(111)表面原子形成化學鍵結,在0.1 M KOH中,由於在-1 V時仍然未有還原電流出現,由此得知苯硫酚分子形成很強的表面化學鍵,由高解像STM圖判斷,兩相鄰苯硫酚分子間距為4.8 Å,以直立的位向吸附在鉑電極,硫鉑之共價鍵為主要的吸附力,苯基部份則傾斜於鉑表面。
(b)2-萘硫酚(2-Naphthalenethiol)的吸附結構
為研究分子結構對其吸附位向的影響,我們選擇萘環單硫分子(2-Naphthalenethiol)在鉑(111)上的吸附,高解像STM結果顯示,在低覆蓋度時2-萘硫酚以其雙環與硫端分子散亂地吸附,同時吸附於電極上,但當表面分子覆蓋度隨電位愈正而增加時,鉑(111)面上開始出現具規則排列之島狀特徵,這些特徵隨時間逐漸成長且數目明顯增加,持續觀察後,同時提高溶液中分子濃度,表面形成一高規則度之(?3 × ?3)R30°吸附結構,此一結構和苯硫酚分子的結果相同,因此二者應具相同的吸附方式,他們均以硫端與鉑電極表面鍵結,而苯及萘環部份則傾斜直立於鉑載體上。
Ⅱ.有機雙硫醇分子修飾於鉑(111)電極:
本論文研究中我們選用兩種烷基雙硫醇分子 : 1,6-己烷基雙硫醇、1,9-壬烷基雙硫醇,及兩種芳香基雙硫醇分子: 鄰苯雙硫醇、間苯雙硫醇,使用掃描式電子穿隧顯微鏡(Scanning Tunneling Microscopy,STM)及循環伏安儀(Cyclic Voltammetry,CV)研究單晶鉑(111)電極表面有機雙硫醇分子自然形成規則有序單層分子薄膜,即所謂自組裝單層膜(self- assembled monolayers, SAMs)。
當電位控制在0.1 ~ 0.3 V (vs.RHE)之間,雙硫醇分子均形成規則單層分子,電位控制決定電極表面分子吸附濃度,由STM成功觀察分子結構會由(2 × 2)轉變為較緊密的(?3 × ?3)R30°結構,覆蓋度分別是0.25及0.33,此結果是第一次由STM觀察出雙硫分子在鉑(111)電極規則吸附。由於單硫醇分子及雙硫醇分子均形成相同的結構,雙硫醇分子之末端硫原子和鉑載體之間的作用力主導分子吸附的最重要動力,在高解像STM影像判斷,分子空間結構吸附方式以硫端鍵結於鉑載體,呈現直立吸附排列。
Ⅲ.同分異構物之硝基酚分子在鉑(111)電極上研究:
選用鄰(Ortho-)、間(Meta-)、對(Para-)之硝基酚分子及硝基苯分子,探討在單晶電極表面有機分子的吸附結構及其氧化還原反應,由CV實驗觀察得知0.1 M過氯酸中,電位介於0.1至0.9 V之間,此等若干有機分子均能完整吸附於鉑(111)電極上。電壓較0.9 V正時,分子開始分解,判斷生成為未知的有機碎片,在0.08 V產生了一個還原波,此特徵峰電流隨著掃描圈數持續增加,得知此一特色應來自於分子本身的脫附及氫的吸附。STM結果顯示,選用的四種硝基酚有機分子在0.1 ~ 0.15 V均有規則結構吸附,對-硝酚分子在0.1V時同時有兩種結構生成,分別為: (5?3 × 4),覆蓋度為0.3及(2?7 × 2?21),覆蓋度為0.41。間-硝基苯分子結構為(?3 × 13),覆蓋度為0.77。鄰-硝基苯分子結構為(6?3 × 2),覆蓋度為0.208。硝基苯分子結構為(?3 × 7),覆蓋度為0.214。分子結構不會隨電位改變而轉變,施加更正電位後,分子呈現不規則吸附,且為不可逆的分子吸附方式,上敘硝酚分子在鉑(111)表面均呈現特殊條紋狀結構吸附,則以對-硝酚為較穩定有機分子聚集。
Ⅳ.同分異構物之氟酚分子在鉑(111)電極上研究:
間(Meta-)、對(Para-)之氟酚分子,探討在單晶鉑電極表面有機分子的吸附結構及其氧化還原反應,可與同分異構物之硝基酚分子進行探討,在STM觀察得知,其分子吸附結構方式均呈現條狀規則分子吸附結構,與硝基酚分子呈現類似吸附方式,分子吸附方式為穩定吸附,分子並未有同一方向吸附,而是呈現60°、120°轉角,此旋轉區塊為相同吸附結構。
高解像STM結果顯示,在0.1 M過氯酸溶液中,定電位於0.1 V吸附氟酚分子,對-氟酚結構為(43 × 8),覆蓋度為0.39,推測為分子垂直吸附,以氟離子與鉑鍵結,所以吸附結構主要是由載體與吸附物吸附之間π-stacking作用力形成,對-氟酚呈現特殊扭結(kinks)結構。間-氟酚為(33 × 7)結構,覆蓋度0.361,兩種分子吸附均呈現條紋狀吸附,在觀察諸此有機分子吸附結構均為條紋狀吸附,不同分子呈現不同結構吸附方式。摘要(英) Abstract
Ⅰ. Self-assembly of aromatic thiols molecules on a well-ordered Pt(111)
(a)Benzenethiol on Pt(111) electrodes
In situ scanning tunneling microscopy (STM) has been used to examine the spatial structures of arylthiols (benzenethiol, 2-naphthalenehtiol) on well-ordered Pt(111) electrodes in 0.1 M HClO4. The electrochemical potential dominated the coverages and the spatial structures of these organic adlayers. Ordered structures were observed only between 0.1 and 0.3 V. Depending on the dosage, two ordered structures were identified. Lower dosages (ca. 10 µM in concentration) of arylthiols resulted in a well ordered (2 × 2) structure with a coverage (θ) of 0.25, whereas higher dosages (ca. 100 µM) resulted in a (?3 × ?3)R30° adlattice, θ = 0.33. The degree of ordering of this benzenethiol adlayer deteriorated substantially once the potential was raised above 0.3 V. This structural change, irreversible with potential modulation, was due to further deposition of organic ad-molecules, preferentially at domain boundaries of ordered (?3 × ?3)R30° arrays. All molecular adlayers were completely disordered by 0.6 V. Since all organosulfur ad-molecules were arranged similarly to those of sulfur adatoms, it is likely that they were bonded to Pt(111) mainly through their sulfur headgroups. They were adsorbed so strongly on Pt(111) electrodes that none of them was reductively removed at a potential as negative as –1.0 V in 1 M KOH.
(b)2-Naphthalenethiol on Pt(111)
To see how the molecular structure of ad-molecules affects their adsorption configuration, we examined the adsorption of 2-naphthalene molecules on Pt(111). The dosage of this molecule dominated its coverage and spatial structures. Lower dosages of 2-Naphthalenethiol resulted in a disorder adlayer. High quality STM imaging reveals the naphthalene and sulfur headgroup of 2-naphthalenethiol molecules, suggesting that 2-naphthalenethiol was adsorbed parallel to the Pt(111) surface at the initial stage of adsorption. Patches of hexagonal arrays, identified as (?3 × ?3)R30°, was observed at more positive potentials, where more 2-naphthalene molecules were adsorbed. The thus-formed patches gradually grew with time to displace the disordered domains, and finally a well-ordered adlayer was produced. In other words, the adsorption of 2-naphthalenethiol proceeded in a disorder-to-order phase transition at higher dosage. 2-Naphthalenethiol ad-molecules could be adsorbed in a tilted configuration with their sulfur headgroup bound to the Pt(111) surface, as identified for benzenethiol on Pt(111). Since the intermolecular spacing of 4.8 Å is less than the van der Waals diameter of 2-nanphthalenethiol, it is likely that this molecule was adsorbed also tilted on Pt(111).
Ⅱ. Organodithiols monolayers on Pt(111) electrodes
We have employed in site scanning tunneling microscopy (STM) and cyclic voltammetry (CV) to study the structures of alkanedithiols (1,6-hexanethiol and 1,9-nonadithiol) aryldithiols (benzene-1,2-dithiol and benzene-1,3-dithiol) on well-ordered Pt(111) electrodes in 0.1 M HClO4. Self-assembled monolayers (SAMs) of organodithiols were adsorbed in ordered structures between 0.1 and 0.3 V. A well-ordered (2 ×2) structure predominated at 0.15 V , which rearranged into an ordered (?3 × ?3)R30° adlattice, as a result of a slight increase of coverage at more positive potentials. Only between 0.1 and 0.3 V did in situ STM reveal long range ordered adlattices of (2 ×2) and (?3 ×?3)R30°. Stepping potential positively to more than 0.5 V resulted in disordering of the adlayer, this phase transition was irreversible to the modulation of potential. All organodisulfur ad-molecules exhibited the same adsorption behavior. It is illustrated that the electrochemical potential played a decisive role in guiding the coverages and spatial structures of SAMs on Pt(111).
Ⅲ. Isomers of Nitrophenol adsorbed on Pt(111)
Organic monolayers of three isomers of nitrophenol and nitrobenzene (Extraction have been studies for the ortho-, meta- and para-Nitrophenol monolayers.) on well-ordered Pt(111) electrodes were examined with electrochemistry, in-situ STM and CV in 0.1 M HClO4. The chemical and physical characteristics of the interface are significantly and differently affected by the isomers comprising the SAMs. A pronounced reductive feature peaking at 0.08 V, attributed to reductive adsorption of nitrophenol and proton reduction, is observed. High-resolution STM images reveal that p-nitrophenol are arranged in well-ordered (5?3 × 4) and (2?7 × 2?21) adlattices at coverages (θ) of 0.3 and 0.41. For m-nitrophenol and o-nitrophenol, (?3 × 13), (θ = 0.77), and (6?3 × 2) structures (θ = 0.208) were identified. in comparison, nitrobenzene molecule was adsorbed in an order (?3 × 7) structure (θ = 0.214). It is evident that the real-space structures varied greatly with the molecular structures of ad-molecules. Since the intermolecular spacings between two neighboring molecules for all cases amounts to 4 or so, it is likely that all molecules were adsorbed in stand-up orientations. The decrease in the degree of freedom imposed by the surface controls the extent of interaction of the nitro group with the solution as well as with the adjacent molecules. It is illustrate ad-molecules were arranged similarly to those of nitro adatoms, the phenyl ring is tilted the surface normal in the monolayer.
Ⅳ. Isomers of Fluorophenol adsorbed on Pt(111)
To further explore the effect of molecular structure on the spatial arrangements of organic ad-molecules on Pt(111), we examined the spatial structures and binding configurations of the geometric isomers (m- and p-) of fluorophenol.While p-fluororphenol arranges in well-ordered (4?3 × 8) with a coverage (θ) of 0.39, m-fluorophenol was adsorbed in an ordered (3Ö3 × 7) structure (θ = 0.361). These two structures appeared as striped patterns with intermolecular spacings of 3.5 ~ 4 Å. To our knowledge, there has no report of fluoro group compounds adsorbed on Pt crystal electrodes in ambient. While similar nitrophenol adsorbed situation of SAMs at Pt surface. The structure of the adlayer is determined by substrate-adsorbate coordination and lateral π-stacking. The most characteristic difference to the p-fluorophenol stacking phase on Pt(111). We found that these kink positions propagate among parallel stacking rows of one domain.關鍵字(中) ★ 鉑(111)
★ 硝酚
★ 雙硫醇分子
★ 氟酚
★ 硫醇關鍵字(英) ★ dithiol
★ Pt(111)
★ Nitrophenol
★ Organosulful
★ Fluorophenol論文目次 目錄
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅳ
目錄.....................................................Ⅸ
圖、表目錄..............................................ⅩⅡ
第壹章、緒論..............................................1
1-1 STM簡介...............................................1
1-1-1 掃描式電子穿隧顯微鏡原理..........................2
1-2 自組性單層膜的介紹....................................5
1-2-1自組性單層膜系統的發展及起源.......................5
1-2-2自組性單層膜系統的分類.............................6
1-2-3自組裝現象及分子的特性.............................8
1-2-4自組性分子薄膜的應用...............................9
1-3 硫醇分子相關研究回顧..................................10
1-3-1芳香基硫醇分子相關研究.............................10
1-3-2 有機雙硫醇分子相關研究............................13
1-4 有機分子探討..........................................17
1-4-1 有機芳香環分子相關研究............................19
1-5 研究動機..............................................22
1-5-1 有機單硫、雙硫醇分子在鉑(111)電極研究...............22
1-5-2 有機硝酚、氟酚同分異構物在鉑(111)電極的吸附結構.....23
第貳章、實驗部分..........................................24
2-1 藥品部分..............................................24
2-2 氣體部分..............................................24
2-3 金屬部分..............................................25
2-4 儀器設備..............................................25
2-5 實驗步驟..............................................27
第三章、In-situ STM觀察Benzenethiol及2-Naphthalenethiol在鉑(111)
電極上的空間結構...................................30
3-1 觀察苯硫酚(Benzenethiol, BT)在鉑(111)電極吸附結構.....30
3-1-1乾淨鉑(111)電極之CV圖................................30
3-1-2 苯硫酚分子修飾鉑(111)電極之CV圖.....................31
3-1-3 乾淨鉑(111)電極之STM圖..............................31
3-1-4 苯硫酚修飾鉑(111)電極之STM圖........................32
(a)苯硫酚濃度對分子結構的影響............................33
(b)電位對苯硫酚吸附層的影響..............................36
3-2 觀察2-Naphthalenethiol在鉑(111)電極吸附結構...........37
3-2-1 2-Naphthalenethiol分子修飾鉑(111)電極之CV圖.........37
3-2-2 2-Naphthalenethiol吸附鉑(111)電極之STM圖............37
第四章、有機雙硫醇分子修飾在鉑(111)電極之吸附結構.........54
4-1 鉑(111)電極在電位控制下吸附有機雙硫醇分子的研究.......54
4-1-1 有機雙硫醇分子修飾鉑(111)電極之CV圖.................54
(a)芳香基雙硫醇分子修飾鉑(111)電極之CV圖.................54
(b)烷基雙硫醇分子修飾鉑(111)電極之CV圖...................54
4-1-2 芳基雙硫醇分子修飾鉑(111)之STM圖....................55
(a)鄰苯雙硫(benzene-1,2-dithiol).........................55
(b)間苯雙硫醇(benzene-1,3-dithiol).......................59
4-1-3 烷基雙硫醇分子修飾鉑(111)之STM圖....................62
(a)1,6-己烷基雙硫醇(1,6-hexanedithiol)...................62
(b)1,9-壬烷基雙硫醇(1,9-nonandithiol)....................65
第五章、有機芳香基化合物吸附在鉑(111)電極之研究...........91
5-1 硝酚分子同分異構物在鉑(111)吸附之研究.................91
5-1-1 (a) 對-硝酚(4-Nitrophenol)..........................91
5-1-2 (b) 間-硝酚(3-Nitrophenol)..........................94
5-1-3(c) 鄰-硝酚(2-Nitrophenol)...........................96
5-1-4 (d) 硝苯(Nitrobenzene...............................97
5-2 氟酚分子同分異構物在鉑(111)吸附之研究.................99
5-2-1 (a) 對-氟酚(4-Fluorophenol..........................99
5-2-2 (b)間-氟酚(3-Fluorophenol)..........................103
第六章、結論..............................................126
第七章、參考文獻..........................................129
圖、表目錄
圖1. 金屬針(一般為鎢絲),末端只有數顆原子大小……………..……4
圖2 針尖維持一定高度地[浮]在表面上掃描.…………………………4
圖3. 分子自我組合的發展……………………………………………...6
圖4. 矽烷以矽-氧共價鍵吸附於玻璃表面…………………………...7
圖5. 羧酸分子以離子鍵方式吸附在氧化鋁表面……………………...7
圖6. 有機硫化物以硫-氧共價鍵方式吸附於金表面………………...8
圖7. 自我組合性單層膜之示意圖……………………………………...9
圖8. (a)苯硫酚以(?13 × ?13 )R13.9∘吸附在金(111)原子模型,
(b)苯硫酚高解像STM 3D影像圖。……………………………..12
圖9 (a)苯硫酚吸附於釕(0001)STM影像,(b)苯硫酚高解像STM圖,
(c) (2 × ?3)結構原子模型圖。……………………………………13
圖10. (a)OT分子,(b)8DT分子在金表面吸附型態…………………...14
圖11. 1,8-辛烷基雙硫醇在銀(111)電極上之STM圖…………………15
圖12. 1,6-己烷基雙硫醇在金(111)電極上之STM圖…………………15
圖13 雙硫醇分子在金屬載體表面吸附模型示意圖…………………16
圖14. 苯吸附在銠(111)電極上。(a)塊狀吸附,(b)高解像(3×3)結構….20
圖15.苯吸附在鉑(111)電極上。(a)塊狀吸附,(b)高解像(?21×?21)R10.9°結構。………………………………………..20
圖16. (a)、(b)高解像CoPc和CuTPP交錯吸附在金(100),(c)原子模
型圖…………………………………………………..................21
圖17. (a)鉑(111)電極於0.1 M過氯酸中的循環伏安圖。(b)苯硫酚分子吸附在鉑(111)於0.1 M過氯酸中之CV圖。實線為乾淨鉑(111)電極、虛線則是吸附苯硫酚分子後。掃描速率為50 mV/s。………………………………………………………...…40
圖18. (a)大範圍觀察乾淨鉑(111)電極於0.1 M過氯酸溶液下之STM圖。(b)高解像鉑(111)載體原子影像。………………………..….41
圖19. 定電流STM時間連續變化圖,苯硫酚在鉑(111)不規則轉變規則相影像,掃描範圍50 × 50 nm。……………………………...42
圖20. 定電流(高度模式)STM影像,顯示表面型態和苯硫酚分子在
鉑(111)表面上的結構…………………………………………..43
圖21 (a)苯硫酚於鉑(111)台階邊緣吸附,取像參數:偏壓120 mV穿隧電流15 nA,(b)(2 × 2)原子結構模型圖,(c)苯硫酚吸附剖面模擬圖。…………………………………………………………44
圖22. STM時間連續變化圖,苯硫酚吸附在鉑(111)結構由(2×2)轉變為(?3×?3)R30°,(a)~(f)時間1分鐘。………………………….45
圖23. (a)、(b)in-situ STM大範圍觀察苯硫酚吸附在鉑(111),吸附結構為(?3×?3)R30°……………………………………………...46
圖24. (a)in-situ STM解析苯硫酚在鉑(111)內部分子影像,(b)、(c)分別為硫端吸附於載體上及苯基排列位向原子模型圖。…………................................................................................47
圖25. (a)苯硫酚分子芳香基部分排列吸附原子模型圖,(a)苯硫酚3D俯視原子示意圖、(b)側面3D模擬吸附原子圖。……………..48
圖26. 定電位於0.25V吸附2-Naphthalenethiol分子吸附於鉑(111)電極之CV圖,掃描速率為50 mV/s。…………………………...49
圖27. (a)、(b)電位於0.1 V吸附2-Naphthalenethiol於鉑(111)電極之STM影像。取像參數:偏壓300 mV,穿隧電流15 nA。………..50
圖28. 提高分子濃度(a)觀察2-Naphthalenethiol於鉑(111)台階上吸附情形,(b)微量規則區塊形成,(c) 2-Naphthalenethiol細部規則結構放大圖。控制電位在0.3V。………………………………..51
圖29. (a) ~ (d) 為2-Naphthalenethiol吸附於鉑(111)電極上的STM圖。(a)、(c)和(d)取像參數:偏壓45 mV,穿隧電流7 nA。(b)取像參數:偏壓40 mV,穿隧電流17 nA。……………………..52
圖30. (a)2-Naphthalenethiol於鉑(111)電極上高解像STM影像圖,取像參數:偏壓45 mV,穿隧電流7 nA,(b) (?3 × ?3)R30°原子模型圖,覆蓋度0.33,(c)3D分子吸附模擬圖。………………...53
圖31. 單層(a)Benzene-1,2-dithiol、(b)1,6-Hexanedithiol吸附於鉑(111)
電極之CV圖。掃描速率為50 mV/s。………………………….68
圖32. STM影像顯示鄰苯雙硫醇於鉑(111)成長吸附模式…………...69
圖33. 一系列STM影像圖顯示鄰苯雙硫醇以成核成長機制吸附。電位控制在0.15 V於0.1 M過氯酸中。…………………………70
圖34. STM影像顯示鄰苯雙硫醇吸附在鉑(111)表面上。(a)、(b)觀察分子於台階上區塊吸附,(c)規則區塊上有分子缺陷及聚集島狀物。…………………………………………………………..71
圖35. (a)鄰苯雙硫醇吸附在鉑(111)電極上,(2 × 2)的STM影像圖,
(b)原子結構模型………………………………………………..72
圖36. 鄰苯雙硫醇結構由(2 × 2)轉變為(?3 × ?3)R30°過渡態。(a)平台上規則吸附結構(2 × 2);(b)表面粗糙化,分子部分聚集亮點產生。……………………………………………………………..73
圖37. 定電流STM時間連續變化圖,鄰苯雙硫醇吸附在鉑(111)結構由(2×2)轉變為(?3×?3)R30°……………………………………74
圖38. 定電流STM時間連續變化圖,鄰苯雙硫醇吸附在鉑(111)…...75
圖39. STM影像顯示表面型態和鄰苯雙硫酚分子在鉑(111)表面上的
結構。(a)大範圍表面形貌,(b)小台階。………………………...76
圖40. (a)、(b)in-situ STM解析鄰苯雙硫醇以(?3×?3)R30°吸附在鉑(111)表面上。(c)原子模型圖。………………………………………77
圖41. (a)、(b)間苯雙硫醇吸附在鉑(111)電極上,為(2 ×2) 的STM圖像,(c)高解像STM圖。………..………………………………..78
圖42. 間苯雙硫醇吸附在鉑(111)電極上,(a)小範圍吸附結構圖,
(b)沿圖(a)白線所得剖面圖…………………………………….79
圖43. (a)in situ STM解析,為(2 × 2)之STM圖像,(b)原子模型圖。………………………………………………………………..80
圖44. 一系列定電流(高度模式)之STM影像圖顯示間苯雙硫醇結構由2 × 2轉變為(?3 × ?3)R30°的STM圖像……………………..81
圖45. STM影像顯示表面型態間苯雙硫醇分子在鉑(111)表面的結構。(a)大範圍平台,(b)小範圍平台。…………………………...82
圖46. (a)in-situ STM解析間苯雙硫醇以(?3 × ?3)R30°吸附在鉑(111)表面上。(b)原子模型圖。………………………...……………..83
圖47. (a)~(c) 1,6-己烷基雙硫醇吸附在鉑(111)電極表面,電極電位0.15V,(a)、(b)分子趨向於台階邊緣吸附成長,(c)隨表面分子濃度增加,吸附區塊沿虛線聚集成長吸附。……………..……84
圖48. (a) 1,6-己烷基雙硫醇吸附在鉑(111)電極表面,規則吸附排列,(b)分子在高濃度下STM影像圖。……………………………85
圖49. (a)、(b) 1,6-己烷基雙硫醇吸附在鉑(111)電極表面高解像STM影像(c)原子結構模型圖,(2 × 2)結構,覆蓋度為0.25。……...……………………………………………………86
圖50. (a)、(b)高濃度下1,6-己烷基雙硫醇吸附在鉑(111)電極表面高解像STM影像,(c)原子結構模型圖………..…………………..87
圖51. 1,9-壬烷基雙硫醇吸附在鉑(111)電極………………………….88
圖52. 1,9-壬烷基雙硫醇吸附在鉑(111)電極,(a)、(b)觀察到分子結構轉變過程,(c)台階上轉變為(?3 × ?3)R30°結構……………..89
圖53. (a)、(b)低濃度1,9-壬烷基雙硫醇吸附在鉑(111)高解像STM影像及原子模型圖,(c)、(d)高濃度1,9-壬烷基雙硫醇高解像STM影像及原子模型圖……………………………………...90
圖54. (a)實線和點線分別是有無對-硝酚修飾過的鉑(111)、(b)對-硝酚吸附在鉑(111)上的還原特徵…………………………………105
圖55. 對-硝酚吸附在鉑(111)上的STM圖…………………………106
圖56. (a)對-硝酚吸附在鉑(111)上的STM影像圖…………………..107
圖57. (a)、(b)對-硝酚吸附在鉑(111)上的STM影像圖,(c)原子結構模型圖,(d)3D模擬示意圖。……………………………………108
圖58. (a)、(b)對-硝酚吸附在鉑(111)上的STM影像圖,(d)原子結構模型圖,結構為(4 × 5Ö3)…………………………………..109
圖59. (a) ~ (d)觀察間-硝酚吸附在鉑(111)電極上的STM影像圖…..110
圖60. (a)、(b)觀察間-硝酚吸附在鉑(111)電極上的STM影像圖…....111
圖61. (a)觀察間-硝酚吸附在鉑(111)電極上的STM影像圖,(b)(Ö3 × 13)結構,原子結構模型圖…………………………………...112
圖62. (a)實線和點線分別是有無鄰-硝酚修飾過的鉑(111)、(b)鄰-硝酚吸附在鉑(111)上的還原特徵………………………………..113
圖63. (a)~(c)觀察鄰-硝酚吸附在鉑(111)電極上的STM影像圖……114
圖64. (a)觀察鄰-硝酚吸附在鉑(111)電極上的STM影像圖,(b) ( 2 × 6?3 )結構,原子結構模型圖…………………………………115
圖65. (a)~(c)觀察硝苯吸附在鉑(111)電極上的STM影像圖……….116
圖66. (a)觀察硝苯吸附在鉑(111)電極上的STM影像圖,(b)(?3 × 7)結構,原子結構模型圖,(c)3D模擬示意圖。……………..…117
圖67. (a)實線和點線分別是有無對-氟酚修飾過的鉑(111)、(b)對-氟酚吸附在鉑(111)上的還原特徵………………………………..118
圖68. 一系列定電流(高度模式)之STM影像圖顯示對-氟酚以條紋狀吸附在台階上………………………………………………..119
圖69. STM影像顯示對-氟酚吸附在鉑(111)表面上。(a)分子為任意吸附排列,無特定位向,(b)台階邊緣聚集吸附,(c)分子以錯位元連接方式吸附,呈現條紋狀排列。……………………....120
圖70. (a)~(c)對-氟酚吸附在鉑(111)電極之STM圖,觀察錯位吸附細部結構,取像參數:偏壓350 mV,穿隧電流3nA。……………121
圖71. (a)觀察對-氟酚吸附在鉑(111)電極上的STM影像圖,(b)( 4Ö3 × 8 )結構,原子結構模型圖,(c)3D模擬示意圖。………..……122
圖72. 定電流STM時間連續變化圖,間-氟酚吸附在鉑(111)電極,(a)~(f)時間9分鐘…………………………………………….123
圖73. (a)、(b)間-氟酚吸附在鉑(111)電極之STM圖…………………124
圖74. (a)觀察間-氟酚吸附在鉑(111)電極上的STM影像圖,(b) ( 3Ö3 × 7 )結構,原子結構模型圖……………………………………125
表1. 不同官能基之烷基硫醇分子在金(111)之單位晶格結構及分子鏈長…………………………………………………………………13參考文獻 第七章、參考文獻
1.黃英碩;科儀新知;1996, 18, 12.
2.Eigler, D. M. E.;Schweizer, E. K. Nature;1990, 344, 524.
3.Chen, C. J.;Introduction to Scanning Tunneling Microscopy;New York:Oxford
Univ. Press, 1993.
4.Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. J. Colloid Interface Sci.
1946, 1, 513.
5.Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc., 1983, 105, 4481.
6.Ulman, A. Chem. Rev. 1996, 96, 1533.
7.Shllers, H.; Ulman, A.; Shnidman, Y.; Eilers, E. J. J. Am. Chem. Soc. 1993,
115, 9389.
8.Taniguchi, I.; Toyosawa, K.; Yamaguchi, H.; Yasukouchi, K. J.
Chem. Soc. Chem. Commun. 1982, 1032.
9.Taniguchi, I.; Toyosawa, K.; Yamaguchi, H.; Yasukouchi, K. J.
Electroanal. Chem. 1982, 140, 187.
10.Crooks, R. M.; Ricco, A. J. Acc. Chem. Res. 1998, 31, 219.
11.Finklea, H. O.; Hanshew, D. O. J. Am. Chem. Soc. 1992, 114, 3173.
12.Forster, R. J.; Faulkner, L. R. J. Am. Chem. Soc., 1994, 116, 5444.
13.Chidsey, C. E. D.; Bertozzi, C. R.; Putrinski, T. M.; Mujsce, A. M. J. Am.
Chem. Soc. 1990, 112, 4301.
14.Schneeweiss, M. A.; Kolb, D. M. Phys. Stat. Sol. 1999, 173, 51.
15.Poirier, G. E. Langmuir 1997, 13, 2019.
16.Finklea, H. O.; Avery, S.; Lynch, M. Langmuir 1987, 3, 409.
17.Billy, J.; Abon, M. Surf. Sci. 1984, 146, L525.
18.Stern, D. A.; Wellner, E.; Salaita, G. N. J. Am. Chem. Soc. 1988, 110, 4885.
19.Wan, L.-J.; Terashima, M.; Osawa, M. J. Phys. Chem. B. 2002, 104, 3563.
20.Ou Yang, L.-Y.; Yau, S.-L.; Itaya, K. Langmuir 2004, 20, 4596.
21.Esplandiu´, M. J. H.; Hagenstro¨m,; Kolb, D. M. Langmuir 2001, 17, 828.
22.Rieley, H.; Kendall, G. K.; Zemicael, F. W. Langmuir 1998, 14, 5147.
23.Cavallini, M.; Bracali, M.; Aloisi, G.; Guidelli, R. Langmuir 1999, 15,
3003.
24.Leung, T. Y. B.; Gerstenberg, M. C.; Lavrich, D. J.; Scoles, G. Langmuir
2000, 16, 549.
25.Lu, F.; Salaita, G.; Baltrushat, H. J. Electroanal. Chem. 1987, 222, 305.
26.Salaita, G.; Frank, D. A. Langmuir 1986, 2, 828.
27.Bertel, E.; Schwaha, K. Surf. Sci. 1979, 83, 439.
28.Stickeny, J.; Rosasco, S. D. Langmuir 1985, 1, 66.
29.Cao, E. Y.; Gao, P.; Gui, J. Y. J. Electroanal. Chem. 1992, 339, 311.
30.Chen, J. H.; Yau, S.-L.; Chang, S. C. J. Phys. Chem. B. 2002, 106, 9079.
31.Zang, Z. H.; Wu, Z. L.; Yau, S.-L. Langmuir 1999, 15, 8750.
32.Tao, N. J.;DeRose, J. A. J. Phys. Chem. 1993, 97,910.
33.Dretschkow, T.; Wandlowski, T. J. Electroanal. Chem. 1999, 467, 207.
34.Cunha, F.; Tao, N. J. Phys. Rev. Lett. 1995, 75, 2376.
35.Wandlowski, T.; Ataka, K.; Mayer, D. Langmuir 2002, 18, 4331.
36.Mayer, D.; Dretschkow, T.; Ataka, K.; Wandlowski, T. J. Electroanal. Chem.
2002, 524–525 , 20.
37.Taniguchi, I.; Toyosawa, K.; H.; Yasukouchi, K. J. Chem. Soc. Chem. Commun.
1982, 1032.
38.Taniguchi, I.; Toyosawa, K.; Yamaguchi, H.; Yasukouchi, K. J. Electroanal.
Chem. 1982, 140, 187.
39.Yau, S.-L.; Kim, Y. G.; Itaya, K. J. Am. Chem. Soc. 1996, 118, 7795.
40.Yau, S.-L.; Kim, Y. G.; Itaya, K. J. Phys. Chem. B. 1997, 101, 3547.
41.Wan, L.-J.; Itaya, K. Langmuir 1997, 13, 7173.
42.Suto, K.; Yoshimoto, S.; Itaya, K. J. Am. Chem. Soc. 2003, 125, 14976.
43.Yoshimoto, S.; Tada, A.; Suto, K.; Itaya, K. J. Phys. Chem. B. 2003, 107,
5836.
44.Yoshimoto, S.; Tada, A.; Suto, K.; Narita, R.; Itaya, K. Langmuir 2003, 19,
672.
45.Poirier, G. E. Chem. Rev. 1997, 97, 1117.
46.McDermott, C. A.; McDermott, M. A.; Green, J. B.; Porter, M. D. J. Phys.
Chem. 1995, 99, 13257.
47.Briner, B. G.; Doering, M.; Rust, H. P.; Bradshaw, A. M. Science. 1997,
278, 257.
48.Frenken, J. W. M.; Kuipers, L.; Hoggeman, M. S. Ber. Bunsenges. Phys. Chem.
1994, 98, 307.
49.Hayek, A.; Glassl, H.; Gutmann, A.; Leonhard, H. Surf. Sci. 1985, 152/153,
419.
50.Waters, M. L. Curr. Opin. Chem. Bio. 2002, 6, 736.
51.Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.
52.Whelan, C. M.; Barnes, C. J.; Walker, C. G. H.; Brown, N. M. D. Surf. Sci.
1999, 425, 195.
53.Bol, C. W. J.; Friend, C. M.; Xu, X. Langmuir 1996, 12, 6083.
54.Ron, H.; Rubinstein, I. J. Am. Chem. Soc. 1998, 120, 13444.
55.Baunach, T.; Ivanova, V.; Kolb, D. M. Langmuir 2004, 20, 2797.
56.Dretschkow, T.; Wandlowski, T. J. Electroanal. Chem. 1999, 467 ,207.
57.Stern, D. A.; Wellner, E.; Salaita, G. N.; Laguren-Davidson, L.; Lu. F. ;
Batina, N.; Frank, D. G.; Zapien, D. C.; Walton, N.; Hubbard, A. T. J. Am.
Chem. Soc. 1988, 110, 4885.指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2004-6-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare