以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:39 、訪客IP:3.141.29.162
姓名 王旭生(Hsu-Shen Wang) 查詢紙本館藏 畢業系所 化學學系 論文名稱 超分子發光二極體相容性、分子運動性與光性之研究
(Supramolecular structure and optical properties of MEH-PPV and TiO2 nanoparticle/tube composite material)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 中文摘要
研究中利用二氧化鈦奈米顆粒與奈米管等不同形式(different shapes)的無機奈米粒子與共軛高分子MEHPPV形成異核超分子結構複合材料,以利用二氧化鈦所具有之半導體性質、高介電值與其易受到光的激發後產生電子與電洞對等的性質來增進共軛高分子的發光性質。實驗中利用Sol-Gel方式將二氧化鈦製成奈米顆粒,並進一步利用強鹼處理成為奈米管與利用TEM鑑定結構,其管長約200nm、管徑約30nm。再分別與高分子發光材料MEH-PPV與Poly(FV) [poly(9,9-di-n-octylfluorenyl-2,7-vinylene)]以及其他PPV系列之共軛高分子進行混摻。並藉由不同的界面活性劑修飾二氧化鈦奈米粒子表面以增進與高分子MEH-PPV 、Poly(FV)溶液二者相容性,以克服二氧化鈦於高分子溶液中不佳的分散性質。利用SEM探討二氧化鈦奈米顆粒與奈米管表面修飾前後在高分子內之分散排列的情形。發現二氧化鈦於高分子溶液中之分散度有效率的提升,並且呈現出長距有序的排列(long-range order arrangement)。IR光譜中顯示因奈米顆粒與奈米管在有效分散下之long-range order 排列而使之與共軛高分子鏈間近距離的接觸與高度的交纏而使二者間的靜電作用力加強並進一步影響高分子鏈上苯環與碳氧鍵結的振動情形。使用UV、PL光譜探討高分子發光材料光學特性,發現其最大吸收波長未受改變但PL放光強度卻有明顯的增加。除此,更進一步探討混摻前後導致其光學特性改變的機制。並於DSC圖譜中探討二氧化鈦奈米顆粒與奈米管影響對高分子物性的影響。除此,我們更利用膠態NMR探討介面活性劑與二氧化鈦奈米顆粒與奈米管之間的作用力,利用固態NMR探討共軛高分子形成複合物時高分子鏈的運動行為,發現在二者極為接近並高度交纏的情形下TiO2 奈米粒子與奈米管有效的影響高分子側鏈的運動。XPS(X-ray photoelectron spectroscopy)光譜則顯示出 Ti2p3/2 或是C1s能階之電子束縛能在複合材料時均是增加的情形,此跡象及顯示出共軛高分子與二氧化鈦奈米粒子與奈米管之間強烈的交互作用,並直接證實IR光譜與XPS光譜的實驗結果。摘要(英) Abstract
Organic and inorganic composites are often used to improve physical properties. Previous studies shows when the nano-size inorganic moiety is arranged in long range ordere, novel ionic and electronic conductive behaviors can be observed. Present study gives the optical properties of a family of organic/inorganic composites where nano-size Titanium dioxide of different shapes (particle and tube) is well dispersed in the conjugated polymer (MEH-PPV). Taking advantage of the semi conductive properties; high dielectric properties, TiO2 nano particle and nano tubes facilitated hole/electron pair formation, which leads to photo-induced/excitation mechanism. As a result, the optical properties of conjugated polymers are substantially improved.
TiO2 nano particle were synthesis by sol-gel processes, which upon further treatment of strong base at elevated temperature converts into TiO2 nano-tube. TEM characterization shows these particles and tubes become isolated due to the modification with different surfactants. SEM images showed the miscibility of TiO2 (tube and particle) with conjugated polymer (MEH-PPV) are substantially improved with surfactant modified TiO2, furthermore they are regularly ordered with long range arrangement. IR spectrum reveals electrostatic force increases with this long range ordered arrangement from the inorganic moiety. Microscopic interactions between surfactant and TiO2 particles are clearly illustrated by Gel-phase NMR. Highly dispersed and long range ordered semi-conducting TiO2 nano particle and nano tubes in MEH-PPV are expected to generate monumental physical property changes. The optical properties of this novel composite material were investigated by UV and PL spectra and a new energy transfer mechanism in these nano-composite materials is proposed.關鍵字(中) ★ 共軛高分子
★ 高分子發光二極體
★ 有機無機複合材料
★ 高分子關鍵字(英) ★ PLED
★ polymer light emitting diode
★ nano-composite material
★ hybride material論文目次 目錄 頁次
中文摘要……………………………………………………………………….…. Ⅰ
英文摘要……………………………………………………………….…………. Ⅱ
謝誌……………………………………………………………………………….. Ⅲ 目錄…………………………………………………………………………………Ⅳ
圖表目錄…………………………………………………………..……….…….…Ⅷ
第一章 緒論……………………………………………………………1
1-1 前言……………………………………………………………...1
1-2 有機發光材料之發展過程…………………………….…………………...1
1-3、有機導電高分子起源及分類………………………………………………..2
1-4、超分子化學簡介……………………………………………………………..4
第二章 文獻回顧………………………………………………………8
2-1共軛高分子之電子結構能帶理論與發光原理……………………………….8
2-2有機發光二極體之元件結構………………………………………………...21
2-3 PPV共軛高分子系統/有機無機複合發光材料…………………….…….....25
2-4錯合物發光二極體………………………………….………………………..27
2-5 Polyfluorene系發光材料………………………….…………………………30
2-5-1 Polyfluorene於有機發光材料上的背景…….…………………………30
2-5-2 Polyfluorene之合成方法與材料之優勢….……………………………31
2-5-3 Polyfluorene之特性…………………………………………………….32
2-5-4 Polyfluorene 穩定性之提升方式….…………………………………...34
2-6超分子化學於材料科學上的應用…………………………….……………..36
第三章 實驗技術及原理……………………………………………………...…..43
3-1 微差掃瞄卡計(Differential Scanning Calorimeter, DSC)原理……………43
3-1-1 利用DSC測量混摻高分子玻璃轉移溫度(Tg)之原理探討…... 44
3-1-2利用DSC測量混摻高分子熔解熱下降原理探討…………………..45
3-1-3DSC實驗操作程序…………………………………………………....45
3-2 熱重量分析儀(Thermo gravimetric analyzer,TGA )……..….46
3-2-1 TGA實驗操作程序…………………………………….46
3-3 傅立葉式紅外線吸收光譜儀(FT-IR)…………………………46
3-3-1 FT-IR實驗操作程序…………………………………...48
3-4 掃瞄式電子顯微鏡(Scanning Electron Microscopy,SEM)….48
3-4-1 SEM實驗操作程序………………………………………...……….49
3-5 穿透式電子顯微鏡……………………………………………….……….49
3-6 X光射線繞射(X-Ray diffraction)……………………………...…………..51
3-6-1 X光射線繞射實驗操作程序………………………………....…….52
3-7 固態核磁共振儀(Solid state NMR)應用在混摻高分子之原理……… ………………………………………………………………………………….…... 53
3-7-1去耦合(decoupling)作用………………………………….……….54
3-7-2 魔角旋轉(Magic Angle Spinning, MAS)……………..…….…...51
3-7-3弛緩過程………………………………………………………………57
3-8 液態與膠態核磁共振………………………………………….……….…59
3-9光性分析…………………………………………..……………………….60
3-9-1 紫外光-可見光吸收光譜儀(UV-vis) …………………………60
3-9-2紫外線-可見光光譜儀(UV-Vis)實驗操作…………….…………61
3-9-3光激發光螢光光譜儀(Photoluminescence , PL) ……………….61
3-10-共軛高分子之製備………...………………...……………………….……62
3-10-1 Poly(dialkoxy phenylene vinylene)之合成……………….………..62
3-10-2 Poly(1,4-Bis-octyloxy phenylene vinylene)之合成………….…….64
3-10-3合成poly(9,9-di-n-octylfluorenyl-2,7-vinylene) derivatives; poly(FV)
………………………...………………...………………………………….66
3-10-4 二氧化鈦奈米顆粒與奈米管的合成…………….……………….68
3-10-5 二氧化鈦奈米顆粒與奈米管之表面修飾與摻合條件……….….69
3-11 藥品………………………...………………...……………………………71
第四章 結果與討論…………………………………...………………...………...73
4-1結構鑑定分析與性質解析……………………………...……………………75
4-1-1 結晶型態與結構形貌之鑑定與分析………...………………….….75
4-1-2二氧化態奈米管結構分析……………………………………….77
4-1-3二氧化態奈米管結構熱穩定性分析…………………………….….80
4-1-4 二氧化鈦奈米顆粒與介面活性劑之作用關係……………...….….81
4-2 複合材料之結構與相融性的探討………………………………….………83
4-2-1 SEM表面紋理分析(Morphology) ……………………….…...…83
4-2-2 複合材料之奈米結構分析(TEM images) ……………….…...…91
4-3微差掃描熱卡計(DSC)分析…………………………………………………92
4-4 X光繞射分析儀………………………………………………………...……96
4-5光學性質與光物理性質分析(Optical properties and physics) ………..……98
4-5-1 紫外光-可見光光譜分析…………………………………..……98
4-5-2 放光光譜分析(PL spectra) ……………………………..………100
4-5-3超分子發光二極體之能量轉移機制(Energy Transfer in Supramolecule light emitting materials) ………...….……………101
4-5-4傅立葉紅外線光譜譜儀(FT-IR)之分析研究……………………107
4-5-4-1 FV (tri [ (9,9-di-n-octylfluorenyl-2,7-vinylene)])系列吸收與放射光譜分析…………………………………………….……..…..107
4-5-4-2 PPV系共軛高分子PDO-PV (poly(1,4-Bis-octyloxy phenylene vinylene))與[74]DB-PPV之吸收與放射光譜分析.……….…..110
4-6 傅立葉紅外線光譜譜儀(FT-IR)之分析研究………………….………….116
4-7 X光電子光譜(XPS:X-ray photoelectron spectroscopy) ……………….125
4-8 NMR分析……………………………………………………….…….…..132
4-8-1 CP/MAS NMR……………………………………….………...132
第五章 總結…………………………………………...…………………………137
第六章 未來展望……………………………………...…………………………140
第七章 參考文獻……………………………………...…………………………141
圖目錄
Figure 1-3 structure of conjugated polymers………………………………………….
………………………………………………………………………. …………...….4
Figure 1-4-1 the development of supramolecular which began from molecular to supramolecular………………………………………………………….
……………………………………………………………………………….………..7
Figure 2-1-1 : (a)The relationship of solvent polarity(P0) and polarity of excited molecular(P1) ; P1>P0,(b) The relationship of solvent polarity(P0) and polarity of ground state molecular(P2);P2>P0。………………………………………………
………………………………………………………………………………………16
Figure 2-1-2 : Pathway1: formation of excited singlet state for polymer,and Pathway 2: recombination of ions to form excimer.
…………………………………………………………………………...……….…18
Figure 2-1-3: Energy transfer mechanism of Loose bolt effect
………………………………………………………………………………………20
Figure 2-4-1: procedure of our research.
………………………………………………………………….…………...………29
Figure 2-5-1: Polymer structures list the unsubstituted PPP、substituted PPP、C9 position substituted Polyfluorene。
…………………………………………………………………. …………………31
Figure 2-5-3-1 The catalyst cycle of Suzuki Coupling。
……………………………………………………………………………..………33
Figure2-6-1:Kinds of electrostatic interaction ………………. …………………38
Figure2-6-2: A case of utilizing hydrogen bond form supramolecular structureal molecular.
…………………………………………………………………….………………39
Figure 2-6-3 structure of terpyridine
………………………………………………………………………….…………41
Figure 2-6-4 benzene is the spacer of terpyridine
…………………………………………………………………….………………42
Figure 2-6-5 carbon-carbon triple bond is the spacer of terpyridine
……………………………………………………………………….……………42
Figure 3-7-2-1 The relative position between sample and magnetic field
……………………………………………………………………………………56
Figure 3-10-1 The synthesis procedure of poly(dialkoxy phenylene
vinylene)
……………………………………………………………………………………62
Figure 3-10-2 The synthesis procedure of poly(1,4-Bis-octyloxy phenylene vinylene)
……………………………………………………………………………………64
Figure 3-10-3 The synthesis procedure of poly(9,9-di -n-octyl fluorenyl-2,7-vinylene) derivatives
……………………………………………………………………………………66
Figure 3-10-4 (a),(b) supramolecular structure of composite
……………………………………………………………………………………70
Figure 4-1-1: X-ray patterns of TiO2 nano-particle /tubes (a) Anatase type TiO2 nanoparticle, (b) tube2 to (g) tube7 are TiO2 nanotube synthesized by sol-gel process.
……………………………………………………………………………………75
Figure 4-1-2: TEM images of TiO2 nanotubes (a) and (b) show bamboo shape of tube. (c) and (d) are tube 5 images show the situation of aggregation and alignment . (e) and (f) are tube 6 images show the tubular like arrangement of TiO2 nano-particles. (g) micrometer size TiO2 nanotube
……………………………………………………………………………………79
Figure 4-1-3 TGA profiles of TiO2 nanoparticle and tubes
……………………………………………………………………………………80
Figure4-1-4(a): gel-phase NMR spectra of TiO2 nanoparticle/SDS (Sodium dodecyl trimethyl chloride) with w/w=1/1 in D-chloroform.
……………………………………………………………………………………81
Figure4-1-4(b): gel-phase NMR spectra of TiO2 nanoparticle/SDS (Sodium dodecyl trimethyl chloride) with w/w=1/10 in D-chloroform.
……………………………………………………………………………………82
Figure 4-2-1 (a) pure MEH-PPV (×1k) ,(b) pure MEH-PPV (×2k)
(c) MEH-PPV film with excess potassium salt(×1k)
(d) MEH-PPV film with excess potassium salt(×2k)
……………………………………………………………………………………85
Figure 4-2-2 SEM images (×1k) (a) pure MEH-PPV, (b) MEH-PPV/1% TiO2 nano particle modified with SDS, (c) MEH-PPV/3% TiO2 nano particle modified with SDS, (d) MEH-PPV/5% TiO2 nano particle modified with SDS, (e) modified with SDS, (f) (×2k)MEH-PPV /5% TiO2 nano particle non- modified.
……………………………………………………………………………………86
Figure 4-2-3 SEM images (×1k) (a) MEH-PPV/1% TiO2 nano particle modified with DAC, (b) MEH-PPV/3% TiO2 nano particle modified with DAC, (c) MEH-PPV/5% TiO2 nano particle modified with DAC, (d) MEH-PPV/1% TiO2 nano particle modified with silane, (e) MEH-PPV/3% TiO2 nano particle modified with silane, (e) MEH-PPV/5% TiO2 nano particle modified with silane………………………………………………….88
Figure 4-2-4 SEM images (×1k) (a) MEH-PPV/1% TiO2 nano tube modified with SDS, (b) MEH-PPV/3% TiO2 nano tube modified with SDS, (c) MEH-PPV/5% TiO2 nano tube modified with SDS, (d) MEH-PPV/1% TiO2 nano tube modified with DAC, (e) MEH-PPV/3% TiO2 nano tube modified with DAC, (f) MEH-PPV/5% TiO2 nano tube modified with DAC, ……………………………………………………………..…89
Figure 4-2-5 TEM images of composite material (MEH-PPV/tube5)
…………………………………………………………………………………….91
Figure4-3-1 DSC profile of MEH-PPV
…………………………………………………………………………………….93
Figure4-3-2 DSC profiles for composite materials. (a) MEH-PPV/5% TiO2 nanoparticle modified with SDS, (b) MEH-PPV/5% TiO2 nanotube modified with SDS.
……………………………………………………………... ……………………94
Figure4-3-3 : notation of sample name
……………………………………………………………………...…………….94
Figure4-3-4 TGA profile of SDS…………………………………………..…….95
Figure4-3-5 TGA profile of N+( Dodecyl trimethyl ammonium chloride)
……………………………………………………………………………………95
Figure 4-4-1 X-ray patterns of (a)MEH-PPV,(b)MTp5-SDS,(c)MTp3-SDS,(d)MTp1-SDS,(e)SDS,
(f)TiO2-SDS,(g)TiO2 nanoparticle (anatase type)
…………………………………………………………………………………….97
Figure 4-4-2 X-ray patterns of figure 4-4-1 which were focused at 2theta=5 to 10o
…………………………………………………………………………...…..……97
Figure 4-5-1-1 UV absorption spectrum for MTp-SDS series sample.
……………………………………………………………………………………..98
Figure 4-5-1-2 UV absorption spectrum for composite materials.
……………………………………………………………………………………..99
Figure 4-5-2-1 relative intensity of PL emission spectras (a) irradiate at 485nm, (b) irradiate at 340nm.
……………………………………………………………………………………100
Figure4-5-2-2(a) (b): PL spectrums of MTp-SDS (a)irradiated at 485,(b) at 340nm
……………………………………………………………………………………104
Figure4-5-2-2(c) (d): PL spectrums of MTt-SDS (c)irradiated at 485,(d) at 340nm
……………………………………………………………………………………105
Figure4-5-3: the probable energy transfer cycle in composite material.
……………………………………………………………………………………106
Figure4-5-4-1-1 :UV spectrums of poly(FV) series composite materials
……………………………………………………………………………………108
Figure4-5-4-1-2 :PL spectrums of poly(FV) series composite materials
…………………………………………………………..………………………..109
Figure4-5-4-2-1:UV spectrums of PDO-PV series composite materials
……………………………………………………………...…………………..…111
Figure4-5-4-2-2 :PL spectrums of PDO-PV series composite materials
…………………………………………………………………...………………..112
Figure4-5-4-2-3 :UV spectrums of DB-PPV series composite materials
……………………………………………………………………………………..113
Figure 4-5-4-2-4:PL spectrums of DB-PPV series composite materials
……………………………………………………………………………………..114
Figure4-6-1: IR spectrum of SDS and modified TiO2 nanoparticles and tubes. …………………………………………………………………….
………………………………………………………………………………..……119
Figure4-6-2: IR spectrum of DAC and modified TiO2 nanoparticles and tubes. …………………………………………………………….
………………………………………………………………………………….120
Figure4-6-3(a): IR spectrum of pure MEH-PPV and composite materials (a) MTp-SDS series, ……………………………...………………
…………………………………………………………………...……………..121
Figure4-6-3(b): IR spectrum of pure MEH-PPV and composite materials (b) MTt-SDS series. ………………………………………………
……………………………………………………………………...…………..122
Figure4-6-3(c): IR spectrum of pure MEH-PPV and composite materials (c)MTtN+ series. ………………………………………………………….
………………………………………………………………………………….123
Figure 4-6-4: Bridging and bidentate types of sulfate bonding to TiO2 ,R=C12H25
………………………………………………………………………………….116
Figure4-7-1(a) and (b): XPS spectra of composite materials. (a) and (b) the Ti-2p1/2 and Ti-2p3/2 binding energy of composite materials. For tube, signal area for the carbon of C-O bonding is obviously increased, and this phenomenon demonstrate that TiO2 close to polymer chain enough to affect the binding evidently. ………………………………………..
………………………………………………………………………………….126
Figure4-7-1(c) and (d): XPS spectra of composite materials. (c) and (d) show different kind of carbon which is bonding with another carbon or oxygen. For tube, signal area for the carbon of C-O bonding is obviously increased, and this phenomenon demonstrate that TiO2 close to polymer chain enough to affect the binding evidently. ……………………………………….
………………………………………………………………………………….127
Figure4-7-2: shows the three series of composite materials (a)MTt(MEH-PPV/TiO2 nanotube modified with SDS), (b) MTP(MEH-PPV/TiO2 nanoparticle modified with SDS).
…………………………………………………………………………………128
Figure4-7-2: shows the three series of composite materials (c) MTtN(MEH-PPV/TiO2 nanotube modified with N+).
…………………………………………………………………………………129
Figure:4-8-1 TCH value of MEH-PPV and composite sample (MTp-SDS, MTpN+, MTt-SDS, MTtN+)………………………………………………
…………………………………………………………………………………134
Figure:4-8-2 TCH value of MEH-PPV and composite sample (MTp-SDS, MTpN+, MTt-SDS, MTtN+)……………………………………………….
…………………………………………………………………………….……135
Figure: 4-8-3 model of composite. The alkyl group of polymer and surfactant were entwining with each other and then compress soft structure of alkyl group. Polymer backbone was closed enough to TiO2 nanotube.
………………………………………………………………………………..…135
表目錄
Table 2-1-1 the influence of substituents on fluorescence
………………………………………………………………………….15
Table 2-5-4:The improvement in light emitting stability and thermo-stability of Polyfluorene.
…………………………………………………………………….……35
Table 4-1-1: synthesis condition of TiO2 nanotube
……………………………………………………………………….…76
Table4-6-1: The IR signals of pure MEH-PPV
………………………………………………………………..…….….118
Table 4-7-1 : variation of Cis binding energy
…………………………………………………………………..…..…130
Table4-7-2: Ti2pbinding energy of TiO2 nanoparticle/tube and composite
materials
…………………………………………………………………………130參考文獻 參考文獻
1. J. S. W. Chien , ”polyacetylene : Chemistry, Physics, and Material Science”, Academic Press, Orlando, 1984.
2. J. H. Burroughes, D. D. C. Bradley, A. R Brown, R. N. Marks, K. Mackay, R. K. Friend, P.L. Burns, A. B. Holmes, Nature, 347 (1990), 539
3. H. H. Horhold, M. Helbig, Makromol. Chem. , Macromol. Symp., 12(1987)229.
4. A. J. Heeger, J. Long Jr. , Optical & Photonics News Aug(1996)
5. (a)“Polymer material promises an inexpensive and thin full-color light-emitting plastic display ”,Electronic Design, 8(1996), 42 .
(b) Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89.
6. C. Kittel, ”Introduction to Solid State Physics”,6th ed., John Wiley & Son, Singapore(1986)
7. T.A. Skotheim, Marcel Dekker, ”Handbook of Conducting Polymers Vol. 1&2”, New York,(1986)
8. A. B. Holmes, D. D. C. Bradley, A. R. Brown, P. L. Burroughes, R. H. Friend, N. C. Greenham, R. W. Jackson, A. Kraft, J. H. F. Martens, K. Pichler and I. D. W. Samuel, Synth. Met. 55-57, 4031(1993)
9. D. R. Baigent, N.C. Greenham, J. Gruner, R. N. Marks, R. H. Friend, D. C. Moratti and A. B. Homlens Synth. Met. 67,3(1994)
10. S. Saito, E. Aminaka, T.Tsutsui and M. Era, J. Lumin. 60, 902(1994)
11. G. E. Johnson, K. M. McGrane and M. Stolka, Pure Appl. Chem. 67, 1975(1995)
12. C. Adachi, K. Nagai and N. Tamoto, Appl. Phys. Lett. 66,2679(1995)
13. T. Tsutsui, E. I. Aminaka, Y. Fujita, Y. Hamada and S. Saito, Synth. Met. 57,4157(1993)
14. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A.J. Heeger, Nature 357,477(1992)
15. Scott M. Grayson, Jean M. J. Frechet, Chem. Rev. 2001, 101, 3819.
16. C. H. Chou, C. F. Shu, Macromolecules 2002, 35, 9673.
17. K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. H. Lee, S. M. Peng, J. Am. Chem. Soc. Commun. 2002, 124, 11576.
18. D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang, C. J. Hawker, K. R. Carter, J. Am. Chem. Soc. 2001, 123, 6965.
19. Patrick R. L. Malenfant, Jean M. J. Frechet, Macromolecules 2000, 33, 3634.
20. D. Marsitzky, R. Vesrbery, P. Blainey, B. T. Tang, J. Hawker, K. R. Carter, J. Am. Chem. Soc. 2001, 123, 6967.
21. S. Setayesh, A. C. Grimsdale, T. Weil, G. Leising, J. Am. Chem. Soc. 2001, 123, 946.
22. P. J. Flory, J. Am. Chem. Soc. 1941, 63, 3096.
23. P. J. Flory, J. Am. Chem. Soc. 1941, 63, 3083.
24. P. J. Flory, J. Am. Chem. Soc. 1941, 63, 3091.
25. P. J. Flory, J. Am. Chem. Soc. 1942, 64, 2205.
26. G. E. Jabbour, B. Kippelen, N. R. Armstrong and Peyghambarian, Appl. Phys. Lett. 73, 1185(1998)
27. C. Zhang, S. Hoger, K. Pakbax, F. Wudl, A. J. Heeger J. Elec. Mater.,22,413(1993)
28. C.L. Gettinger and A.J. Heeger J. Chem. Phys. 101,1673(1994)
29. C. Zhang, S. Hoger, K. Pakbax, F. Wudl, A. J. Heeger J. Elec. Mater.,23,453(1994)
30. G. Grem, G. Leditxky, B. Ullrich, G. Leising,Adv.Mater.,4,36(1992)
31. J. Huber, K. Mullen, J. Saleck, U. Scherf, R. Stern, Acra Polymer,45,244(1994)
32. J. Gruner, P. J. Hamer, R. H. Friend, H.-J. Huber, U. Scherf, and A. B. Holmes, Adv. Mater.,6,488(1994)
33. M. Berggren, O. Inganas, G.Gustafsson,Nature,372,444(1994)
34. F. Garten, A. R. Schatmann, Appl. Phys. Lett, 66, 2540(1991)
35. S. C. Chang, Y. Li, Y. Yang, J. Phys. Chem., 10411650(2000)
36. Paul A.van Hal,Marwijn P.T.Christiaan,Martijn M.Wienk,J.Phys.Chem.B 1999,103,4352
37. Neil A. Anderson,Encai Hao,Xin Ai,Chem.phys.lett 347 (2001)304
38. Daniel Moses,Arthur Dogariu,Alan J.Heeger, Chem.phys.lett 316(2000)356
39. Young Kwan Kim ), Kwaung Youn Lee , Oh Kwan Kwon, Dong Myoung Shin , Synthetic Metals 111–112 2000 207–211
40. Kunio Esumi,Hiroaki Toyoda,Masata Goino,Langmuir 1998,14 199
41. Jamie C.Schulz,Gregory G. Warr Langmuir2002,18 3191
42. Kenichi Sakai,Kanjiro Torigoe,and Kunio Esumi Langmuir 2001,17,4973
43. Shih-Chun Lo,Nigel A.H.Male,Jonathan P.J.Markham,Steven W.Magennis,Paul L.Burn,Adv.Mater.2002,14,No13-14,July4
44. Raed Ghanem,Yunhua Xu,Jie Pan,Tobias Hoffmann,Johan Andersson,Tomas Polivka,inorg.Chem.2002,41,6258-6266
45. Paul G.Hoertz,David W.Thopson,Lee A.Friedman,andGerald J.Meyer,J.Am.Chem.Soc.2002,124,9690
46. Jian Pei, Xiao-Lin, Wang-Lin Yu, Yee-Hing Lai, Yu-Hua Niu, and Yong Cao Macromolecular 2002,35,7274
47. Xiong Gong, Jacek C. Ostrowski, Guillermo C. Bazan, Daniel Moses, Alan J. Heeger, Michelle S. Liu, and Alex K.-Y. Jen, Adv Mater. 2003,15, No1 ,January ,45
48. M. Leclerc, J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2867.
49. 廖志偉, 國立交通大學應用化學所碩士論文, 民國91年.
50. R. J. Waltman, A. F. Diaz, J. Bargon, J. Electrochem. Soc. 1985, 132, 631.
51. M. Fukuda, K. Sawada, K. Yoshino, J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 2465.
52. Q. Pei, Y. Yang, J. Am. Chem. Soc. 1996, 118, 7416.
53. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
54. Marino A. Campo, Richard C. Larock , Organic Letters 2000, 2, 3675.
55. M. Ranger, D. Rondeau, Macromolecules 1997, 30, 7686.
56. M. Ranger, M. Leclerc, J. Chem. Soc. Chem. Commun. 1997, 34, 1597.
57. W. L. Yu, Y. Cao, J. Pei, W. Haung, A. J. Heeger, J. Appl. Phys. Lett. 1999, 75, 3270.
58. Jr. W. W. Schloman, H. Morrison, J. Am. Chem. Soc. 1977, 99, 3342.
59. P. Chandrasekhar, “Conducting polymers, Fundamentals and Applications A Practical Approach”, 1999, Kliweer academic publishers.
60. Takafumi Sato, Dong-Lin Jiang, Takuzo Aida, J. Am. Chem. Soc. 1999, 121, 10658.
61. Scott M. Grayson, Jean M. J. Frechet, Chem. Rev. 2001, 101, 3819.
62. C. H. Chou, C. F. Shu, Macromolecules 2002, 35, 9673.
63. K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. H. Lee, S. M. Peng, J. Am. Chem. Soc. Commun. 2002, 124, 11576.
64. D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang, C. J. Hawker, K. R. Carter, J. Am. Chem. Soc. 2001, 123, 6965.
65. Patrick R. L. Malenfant, Jean M. J. Frechet, Macromolecules 2000, 33, 3634.
66. D. Marsitzky, R. Vesrbery, P. Blainey, B. T. Tang, J. Hawker, K. R. Carter, J. Am. Chem. Soc. 2001, 123, 6967.
67. S. Setayesh, A. C. Grimsdale, T. Weil, G. Leising, J. Am. Chem. Soc. 2001, 123, 946.
68. J. M. Lehn, Angew. Chem. (1988) 100, 91;Angew. Chem. Int. Ed. Engl. 27 (1988) 89.
69. Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24, 197.
70. (a) Tecilla, P.; Dixon, R. P.; Slobodkin, G.; Alavi, D. S.; Waldeck, D. H.; Hamilton, A. D. J. Am. Chem. Soc. 1990, 112, 9408. (b) Yang, J. Tetrahedron Lett. 1994, 35, 3665.
71. Matuias, J. P.; Siman. M. J. Am. Chem. Soc. 1994, 116, 4326.
72. Harriman, A.; Ziesl, Roord. Chem. Rev. 1998, 171, 331.
73. Barigelletti, F.; Flamigni, L..; Collin, J.-P.; sauvage, J.-P.; Sour, A.; Constable, E. C.; Cargill Thompson, A. M. W.Am. Chem. Soc. 1994, 116, 7692.
74.由實驗室92級學長:林宗賢提供DB-PPV高分子。指導教授 諸柏仁(Peter-P Chu) 審核日期 2004-7-15 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare