參考文獻 |
1. Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H., Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 1998, 280, (5363), 560-564.
2. Henriciolive, G.; Olive, S., Fischer-Tropsch Synthesis - Molecular-Weight Distribution of Primary Products and Reaction-Mechanism. Angewandte Chemie-International Edition in English 1976, 15, (3), 136-141.
3. Ashcroft, A. T.; Cheetham, A. K.; Foord, J. S.; Green, M. L. H.; Grey, C. P.; Murrell, A. J.; Vernon, P. D. F., Selective oxidation of methane to synthesis gas using transition metal catalysts. Nature 1990, 344, (6264), 319-321.
4. Hickman, D. A.; Schmidt, L. D., Production of Syngas by Direct Catalytic-Oxidation of Methane. Science 1993, 259, (5093), 343-346.
5. Hanson, R. S.; Hanson, T. E., Methanotrophic bacteria. Microbiological Reviews 1996, 60, (2), 439-&.
6. Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J., Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 2004, 43, (15), 4421-4430.
7. Feig, A. L.; Lippard, S. J., Reactions of Nonheme Iron(Ii) Centers with Dioxygen in Biology and Chemistry. Chemical Reviews 1994, 94, (3), 759-805.
8. Lipscomb, J. D., Biochemistry of the Soluble Methane Monooxygenase. Annual Review of Microbiology 1994, 48, 371-399.
9. Yoshizawa, K.; Suzuki, A.; Shiota, Y.; Yamabe, T., Conversion of methane to methanol on diiron and dicopper enzyme models of methane monooxygenase: A theoretical study on a concerted reaction pathway. Bulletin of the Chemical Society of Japan 2000, 73, (4), 815-827.
10. Yoshizawa, K., Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase. Journal of Inorganic Biochemistry 2000, 78, (1), 23-34.
11. Wilkinson, B.; Zhu, M.; Priestley, N. D.; Nguyen, H. H. T.; Morimoto, H.; Williams, P. G.; Chan, S. I.; Floss, H. G., A concerted mechanism for ethane hydroxylation by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Journal of the American Chemical Society 1996, 118, (4), 921-922.
12. Valentine, A. M.; Wilkinson, B.; Liu, K. E.; KomarPanicucci, S.; Priestley, N. D.; Williams, P. G.; Morimoto, H.; Floss, H. G.; Lippard, S. J., Tritiated chiral alkanes as substrates for soluble methane monooxygenase from Methylococcus capsulatus (Bath): Probes for the mechanism of hydroxylation. Journal of the American Chemical Society 1997, 119, (8), 1818-1827.
13. Valentine, A. M.; LeTadic-Biadatti, M. H.; Toy, P. H.; Newcomb, M.; Lippard, S. J., Oxidation of ultrafast radical clock substrate probes by the soluble methane monooxygenase from Methylococcus capsulatus (Bath). Journal of Biological Chemistry 1999, 274, (16), 10771-10776.
14. Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H. H. T.; Yip, J. H. K.; Chan, S. I., Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). Journal of the American Chemical Society 1997, 119, (42), 9949-9955.
15. Huang, D. S.; Wu, S. H.; Wang, Y. S.; Yu, S. S. F.; Chan, S. I., Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis. Chembiochem 2002, 3, (8), 760-765.
16. Yu, S. S. F.; Wu, L. Y.; Chen, K. H. C.; Luo, W. I.; Huang, D. S.; Chan, S. I., The stereospecific hydroxylation of 2,2-H-2(2) butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (bath). Journal of Biological Chemistry 2003, 278, (42), 40658-40669.
17. Baik, M. H.; Gherman, B. F.; Friesner, R. A.; Lippard, S. J., Hydroxylation of methane by non-heme diiron enzymes: Molecular orbital analysis of C-H bond activation by reactive intermediate Q. Journal of the American Chemical Society 2002, 124, (49), 14608-14615.
18. Baik, M. H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J., Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chemical Reviews 2003, 103, (6), 2385-2419.
19. Chen, K. H. C.; Chen, C. L.; Tseng, C. F.; Yu, S. S. F.; Ke, S. C.; Lee, J. F.; Nguyen, H. T.; Elliott, S. J.; Alben, J. O.; Chan, S. I., The copper clusters in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath). Journal of the Chinese Chemical Society 2004, 51, (5B), 1081-1098.
20. Lieberman, R. L.; Rosenzweig, A. C., Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 2005, 434, (7030), 177-182.
21. Chen, P. P.-Y.; Chan, S. I., Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase. Journal of Inorganic Biochemistry High-valent iron intermediates in biology 2006, 100, (4), 801-809.
22. Burness, D. M.; Bayer, H. O., Synthesis and Reactions of Quaternary Salts of Glycidyl Amines. Journal of Organic Chemistry 1963, 28, (9), 2283-&.
23. Andreyanova, T. A.; Minakova, S. M.; Linberg, L. F.; Alekseeva, L. M.; Turchin, K. F.; Chernov, V. A.; Sheinker, Y. N.; Safonova, T. S., Synthesis and Anti-Tumor Activity of Diamine Derivatives Containing Gamma-Chloro-Beta-Hydroxy-Propyl Groups. Khimiko-Farmatsevticheskii Zhurnal 1982, 16, (12), 1460-1463.
24. Hayashi, S.; Furukawa, M.; Fujino, Y.; Sugita, M.; Nakao, T., Studies on Antitumor Substances .12. Synthesis of Bis(2,3-Epoxypropyl)Amine Derivatives and Reaction with Some Nucleophiles. Chemical & Pharmaceutical Bulletin 1971, 19, (10), 2003-&.
25. Knapp, S.; Trope, A. F.; Theodore, M. S.; Hirata, N.; Barchi, J. J., Ring Expansion of Ketones to 1,2-Keto Thioketals - Control of Bond Migration. Journal of Organic Chemistry 1984, 49, (4), 608-614.
26. Blain, I.; Bruno, P.; Giorgi, M.; Lojou, E.; Lexa, D.; Reglier, M., Aminoindanes in oxygen transfer reactions, 2 - Copper complexes as functional models for dopamine beta-hydroxylase stereospecific oxygen atom transfer. European Journal of Inorganic Chemistry 1998, (9), 1297-1304.
27. Blain, I.; Giorgi, M.; De Riggi, I.; Reglier, M., Aminoindanes in oxygen transfer reactions, part 3. Copper complexes as functional models for dopamine beta-hydroxylase mechanistic study of oxygen atom transfer from Cu/O species to benzylic C-H bonds. European Journal of Inorganic Chemistry 2001, (1), 205-211.
28. Blain, I.; Pierrot, M.; Giorgi, M.; Reglier, M., Dopamine beta-hydroxylase, a fascinating mammalian copper-containing monooxygenase: enzymatic and biomimetic studies of the O-atom transfer catalysis. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie 2001, 4, (1), 1-10.
29. Gelling, O. J.; Meetsma, A.; Feringa, B. L., Bimetallic Oxidation Catalysts - Synthesis, X-Ray-Analysis, and Reactivity of a Binuclear Para-Hydroquinone-Containing Copper(Ii) Complex. Inorganic Chemistry 1990, 29, (15), 2816-2822.
30. Gelling, O. J.; Vanbolhuis, F.; Meetsma, A.; Feringa, B. L., Bimetallic Oxidation Catalysts - Oxygen Insertion into an Aryl-Hydrogen Bond of a Binuclear Copper(I) Complex. Journal of the Chemical Society-Chemical Communications 1988, (8), 552-554. |