參考文獻 |
王天送,「鋼筋混凝土與鹼-矽反應防範對策之探討」,中國土木水利工程學刊,第二十三卷,第二期,第18~22頁(1996)。
王淑慧,「台灣地區岩石之鹼-骨材反應潛能研究」,碩士論文,國立中央大學應用地質研究所,中壢 (1999)。
王櫻茂、吳振成、楊宏儀、田永銘、陳裕新,「台灣地區鹼-骨材反應特性之研究」,行政院國科會專題研究報告,NSC78-0410-E006-20,共98頁 (1989)。
王櫻茂、吳振成、楊宏儀、田永銘、許智能,「以普蜀蘭混合材料防制鹼-骨材反應(一)」, 行政院國科會專題研究報告,NSC79-0410-E006-32,臺北 (1990)。
王櫻茂、楊宏儀、田永銘、許智能,「以普蜀蘭混合材料防制鹼-骨材反應(二)」, 行政院國科會專題研究報告,NSC80-0410-E006-27,臺北 (1991)。
田永銘、王淑慧、彭柏翰、賴武德,「台灣安山岩質骨材之鹼反應行為」,第五屆結構工程研討會,台中,第643-651頁(2000)。
田永銘、王淑慧、潘亮宇、陳維民,「混凝土鹼骨材反應劣化與防治」,構造物破壞原因探討與處置研討會論文集,第125~150頁,台北(1999a)。
田永銘、楊世和、王淑慧,「台灣東部骨材鹼反應潛能研究」,中國土木水利工程學刊,第十三卷,第一期,第217~226頁(2001a)。
田永銘、楊世和、彭柏翰、王淑慧,「台灣的鹼-骨材反應問題與對策」,土木水利,第二十六卷,第一期,第78-94頁 (1999b)。
田永銘、潘亮宇、吳柏林,「台灣混凝土鹼-骨材反應問題與對策」,交通部公路局第四區工程處專題演講書面資料,宜蘭(2001b)。
李釗、陳桂清、許書王、柯正隆、饒正,「花蓮港港區混凝土結構物鹼質與粒料反映之分析研究」,港灣技術,第十四卷,第91-112頁(1999)。
李建中,「公共工程砂石供需問題與因應之道」,國立中央大學土木工程系邀請演講資料,中壢 (1997)。
林晏吉,「花東地區鹼-骨材反應之成因探討」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
陳仁達,「花東地區鹼-骨材反應及防治方法」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學應用地質研究所,中壢(2000)。
張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
彭柏翰,「花蓮溪安山岩含量之悲極效應研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
楊世和,「台灣東部反應性骨材之探討及分析」,碩士論文,國立中央大學土木工程研究所,中壢 (1997)。
褚炳麟、顏聰、盧俊寬,「台灣西部地區砂石料源鹼質反應調查研究」,交通部台灣區國道新建工程局研究報告,臺北 (1994)。
謝文凱,「抑制鹼-骨材反應之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1997)。
ASTM C1105-95, “Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction,” Annual book of ASTM Standards, pp. 566-569(1995).
ASTM C1260-94, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual book of ASTM Standards, pp. 644-647(1994).
ASTM C1293-95, “Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete Due To Alkali-Silica Reaction,” Annual book of ASTM Standards, pp. 648-653(1995).
ASTM C227-90, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual book of ASTM Standards, pp. 125-129(1990).
ASTM C289-94, “Standard Test Method for Potential Alkali-Silica Reactivity of Aggregate (Chemical Method),” Annual book of ASTM Standards, pp. 156-162(1994).
ASTM C586-92, “Standard Test Method for Potential Alkali Reactivity of Carbonate Rocks for Concrete Aggregate (Rock Cylinder Method),” Annual book of ASTM Standards, pp. 282-285(1992).
David Stark, “Handbook for the Identification of Alkali-Silica Reactivity in Highway Structures,”Strategic Highway Research Program, Washington, DC, U.S.A., pp35-49(1991).
Deng Min, Xu Zhongzi, Lan Xianghui, Hau Sufen, Tang Mingsgu, “Microstructures of some Alkali-Silica Reactive Aggregates in China, ”Cement and Concrete Research, Vol. 26, No. 5, pp.663-668(1996).
Diamond, S., ”A review of alkali-silica reaction and expansion mechanism, alkalis in cement and in concrete pore solutions,” Cement and Concrete Research, Vol. 5, pp.329-346 (1975).
French, W. J., “Concrete petrography: a review, ”Quarterly Journal of Engineering Geology, Vol. 24, pp.17-48 (1991).
G. del Cura, P. Garces, E. Garcia Alcocel,“Petrographical analysis of calcium aluminate cement mortars Scanning eletron microscopy and transmitted light microscopy,” Cement and Concrete Research, Vol. 29, No. 8, pp.1881-1885 (1999).
Hatesaiyer, K. and Hover, K.C.,“Insitu Identification of ASR Products in Concrete,”Cement and Concrete Research, Vol.18, No. 3, pp.455-463 (1988).
Hatesaiyer, K. and Hover, K.C.,“Further Study of an In-situ Identification for Alkali-Silica Reaction Products in Concrete,” Cement and Concrete Research, Vol.19, No. 5, pp.770-778 (1989).
Hobbs, D. W., Alkali-Silica Reaction in Concrete, Thomas Telford, London (1988).
Lane, S. D. and Ozyildirum, H. C.,“Evaluation of the Effect of Portland Cement Alkali Concrete, Fly Ash, Ground Slag, and Silica Fume on Alkali-Silica Reactivity, ”Cement, Concrete, and Aggregates, CCADGP, Vol. 21, No. 2, pp. 126-140 (1999).
Micheline Regourd and Moranville, “Products of reaction and petrographic examination,”8th International Conference on Alkali-Aggregate Reaction, Kyoto, Japan, pp.445-468(1989).
Mitsunori Kawamura, Kunio Takemoto and Nagamasa Terashima, “Effect of sodium chloride and sodium hydroxide from the surrounding solution on alkali-silica reaction in mortars containing fly ash, ”Magazing of Concrete Research, Vol. 40, No. 144, pp143-151(1988).
Ramachandran, V. S.,“Alkali-aggregate expansion inhibiting admixtures,”Cement and Concrete Composites, Vol. 20, pp.149-161 (1998).
Sarker, S. L., and Little, D. N., “Microstructural Investigation of Severe Distress in a Crushed Concrete Base, ”Cement and Concrete Research, Vol. 28, No. 3, pp.401-410(1998).
Stanton, T. E., “The expansion of concrete through reaction between cement and concrete,” Proc. American Soc. Civil Engineers, Vol.66, pp. 1781-1811 (1940).
Stark, D. C., “Lithium salt admixtures-an alternative method to prevent expansive alkali-silica reactivity,” 9th International Conference on Alkali-Aggregate Reaction, London, pp.1017-1025 (1992).
Swamy, R. N., The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York (1992).
Thomas, M. D. A., Hooton, R. D., and Rogers, C. A.,“Prevention of Damage Due to Alkali-Aggregate Reaction (AAR) in Concrete Construction-Canadian Approach,”Cement, Concrete, and Aggregates, CCAGDP, Vol. 19, No. 1, pp.26-30 (1997).
Wang Aiqin, Zhang Chengzhi, Tang Mingshu, Zhang Ningsheng, “ASR in mortar bars containing silica glass in combination with high alkali and high fly ash contents, ”Cement and Concrete Composites, Vol. 20, pp.375-381(1999). |