參考文獻 |
(1) Lipscomb, J. D. (1994) Biochemistry of the Soluble Methane Monooxygenase. Annual Review of Microbiology 48, 371-399.
(2) Wallar, B. J., and Lipscomb, J. D. (1996) Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. Chem. Rev. 96, 2625-2658.
(3) Kao, W. C., Chen, Y. R., Yi, E. C., Lee, H., Tian, Q., Wu, K. M., Tsai, S. F., Yu, S. S., Chen, Y. J., Aebersold, R., and Chan, S. I. (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279, 51554-60.
(4) Elliott, S. J., Zhu, M., Tso, L., Nguyen, H. H. T., Yip, J. H. K., and Chan, S. I. (1997) Regio- and Stereoselectivity of Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 119, 9949-9955.
(5) Yu, S. S., Wu, L. Y., Chen, K. H., Luo, W. I., Huang, D. S., and Chan, S. I. (2003) The stereospecific hydroxylation of [2,2-2H2]butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 278, 40658-69.
(6) Baptist, J. N., Gholson, R. K., and Coon, M. J. (1963) Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta 69, 40-7.
(7) Peterson, J. A., Kusunose, M., Kusunose, E., and Coon, M. J. (1967) Enzymatic omega-oxidation. II. Function of rubredoxin as the electron carrier in omega-hydroxylation. J Biol Chem 242, 4334-40.
(8) Austin, R. N., Chang, H. K., Zylstra, G. J., and Groves, J. T. (2000) The Non-Heme Diiron Alkane Monooxygenase of Pseudomonas oleovorans (AlkB) Hydroxylates via a Substrate Radical Intermediate. J. Am. Chem. Soc. 122, 11747-11748.
(9) Fu, H., Newcomb, M., and Wong, C.-H. (1991) Pseudomonas oleovorans Monooxygenase Catalyzed Asymmetric Epoxidation of Allyl Alcohol Derivatives and hydroxylation of a hypersensitive radical probes with the radical ring opening rate exceeding the oxygen rebound rate. J. Am. Chem. Soc. 113, 5878-5880.
(10) Andreas G. Katopodis, H. A. S., Jr., and Sheldon W. May. (1988) New Oxyfunctionalization Capabilities for w-Hydroxylases:
Asymmetric Aliphatic Sulfoxidation and Branched Ether
Demethylation. J. Am. Chem. SOC., 897-899.
(11) Andreas G. Katopodis, K. W., Joseph Lee, and Sheldon W. May. (1984) Mechanistic Studies on Non-Heme Iron Monooxygenase Catalysis Epoxidation, Aldehyde Formation, and Demethylation by the w-Hydroxylation System of Pseudomonas oleovorans. J. Am. Chem. Soc. 106, 7928-7935.
(12) McKenna, E. J., and Coon, M. J. (1970) Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans. J Biol Chem 245, 3882-9.
(13) Renata G. Mathys, A. S. B. W. (1999) Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: Process design and economic evaluation. Biotechnology and Bioengineering 64, 459-477.
(14) van Beilen, J. B., Smits, T. H., Roos, F. F., Brunner, T., Balada, S. B., Rothlisberger, M., and Witholt, B. (2005) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol 187, 85-91.
(15) Shanklin, J., Achim, C., Schmidt, H., Fox, B. G., and Munck, E. (1997) Mossbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci U S A 94, 2981-6.
(16) Ueda, T., Lode, E. T., and Coon, M. J. (1972) Enzymatic omega-oxidation.VI. Isolation of homogeneous reduced diphosphopyridine nucleotide-rubredoxin reductase. J Biol Chem 247, 2100-2116.
(17) Peterson, J. A., and Coon, M. J. (1968) Enzymatic omega-oxidation. III. Purification and properties of rubredoxin, a component of the omega-hydroxylation system of Pseudomonas oleovorans. J Biol Chem 243, 329-34.
(18) Peterson, J. A., Basu, D., and Coon, M. J. (1966) Enzymatic omega-oxidation. I. Electon carriers in fatty acid and hydrocarbon hydroxylation. J Biol Chem 241, 5162-4.
(19) Chakrabarty, A. M., Chou, G., and Gunsalus, I. C. (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci U S A 70, 1137-40.
(20) Kok, M., Oldenhuis, R., van der Linden, M. P., Raatjes, P., Kingma, J., van Lelyveld, P. H., and Witholt, B. (1989) The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem 264, 5435-41.
(21) Kok, M., Oldenhuis, R., van der Linden, M. P., Meulenberg, C. H., Kingma, J., and Witholt, B. (1989) The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. J Biol Chem 264, 5442-51.
(22) Eggink, G., Engel, H., Vriend, G., Terpstra, P., and Witholt, B. (1990) Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol 212, 135-42.
(23) Eggink, G., Engel, H., Meijer, W. G., Otten, J., Kingma, J., and Witholt, B. (1988) Alkane utilization in Pseudomonas oleovorans. Structure and function of the regulatory locus alkR. J Biol Chem 263, 13400-5.
(24) Eggink, G., Lageveen, R. G., Altenburg, B., and Witholt, B. (1987) Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J Biol Chem 262, 17712-8.
(25) van Beilen, J. B., Panke, S., Lucchini, S., Franchini, A. G., Rothlisberger, M., and Witholt, B. (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147, 1621-30.
(26) Lode, E. T., and Coon, M. J. (1971) Enzymatic omega-oxidation. V. Forms of Pseudomonas oleovorans rubredoxin containing one or two iron atoms: structure and function in omega-hydroxylation. J Biol Chem 246, 791-802.
(27) Lee, H. J., Lian, L. Y., and Scrutton, N. S. (1997) Recombinant two-iron rubredoxin of Pseudomonas oleovorans: overexpression, purification and characterization by optical, CD and 113Cd NMR spectroscopies. Biochem J 328 ( Pt 1), 131-6.
(28) Perry, A., Lian, L. Y., and Scrutton, N. S. (2001) Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies. Biochem J 354, 89-98.
(29) Perry, A., Tambyrajah, W., Grossmann, J. G., Lian, L. Y., and Scrutton, N. S. (2004) Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase. Biochemistry 43, 3167-82.
(30) Coon, M. J. (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338, 378-85.
(31) van Beilen, J. B., Neuenschwander, M., Smits, T. H., Roth, C., Balada, S. B., and Witholt, B. (2002) Rubredoxins involved in alkane oxidation. J Bacteriol 184, 1722-32.
(32) van Beilen, J. B., Penninga, D., and Witholt, B. (1992) Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem 267, 9194-201.
(33) Shanklin, J., and Cahoon, E. B. (1998) Desaturation and Related Modifications of Fatty Acids. Annu Rev Plant Physiol Plant Mol Biol 49, 611-641.
(34) Shanklin, J., Whittle, E., and Fox, B. G. (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33, 12787-94.
(35) Avelange-Macherel, M. H., Macherel, D., Wada, H., and Murata, N. (1995) Site-directed mutagenesis of histidine residues in the delta 12 acyl-lipid desaturase of Synechocystis. FEBS Lett 361, 111-4.
(36) Taton, M., Husselstein, T., Benveniste, P., and Rahier, A. (2000) Role of highly conserved residues in the reaction catalyzed by recombinant Delta7-sterol-C5(6)-desaturase studied by site-directed mutagenesis. Biochemistry 39, 701-11.
(37) Solomon, E. I., Brunold, T. C., Davis, M. I., Kemsley, J. N., Lee, S. K., Lehnert, N., Neese, F., Skulan, A. J., Yang, Y. S., and Zhou, J. (2000) Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes. Chem. Rev. 100, 235-350.
(38) Que, L., and Dong, Y. (1996) Modeling the Oxygen Activation Chemistry of Methane Monooxygenase and Ribonucleotide Reductase. Acc. Chem. Res. 29, 190-196.
(39) Holm, R. H., Kennepohl, P., and Solomon, E. I. (1996) Structural and Functional Aspects of Metal Sites in Biology. Chem. Rev. 96, 2239-2314.
(40) Merkx, M., Kopp, D. A., Sazinsky, M. H., Blazyk, J. L., Muller, J., and Lippard, S. J. (2001) Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins. Angew Chem Int Ed Engl 40, 2782-2807.
(41) Kim, C., Dong, Y., and Que, L. (1997) Modeling Nonheme Diiron Enzymes: Hydrocarbon Hydroxylation and Desaturation by a High-Valent Fe2O2 Diamond Core. J. Am. Chem. Soc. 119, 3635-3636.
(42) Kim, C., Chen, K., Kim, J., and Que, L. (1997) Stereospecific Alkane Hydroxylation with H2O2 Catalyzed by an Iron(II)-Tris(2-pyridylmethyl)amine Complex. J. Am. Chem. Soc. 119, 5964-5965.
(43) Costas, M., Rohde, J. U., Stubna, A., Ho, R. Y. N., Quaroni, L., Munck, E., and Que, L. (2001) A Synthetic Model for the Putative FeIV2O2 Diamond Core of Methane Monooxygenase Intermediate Q. J. Am. Chem. Soc. 123, 12931-12932.
(44) Abhik Ghosh, E. T. E. G. L. Q., Jr. (2004) Models of High-Valent Intermediates of Non-Heme Diiron Alkane Monooxygenases: Electronic Structure of a Bis(μ-oxo)diron(IV) Complex with Locally Low-Spin Metal Centers. Angewandte Chemie International Edition 43, 834-838.
(45) Meunier, B., deVisser, S. P., and Shaik, S. (2004) Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem. Rev. 104, 3947-3980.
(46) 塗立群. (2004) Enzymatic Kinetics: The hydroxylation and epoxidation reaction of small alkanes and alkenes as mediated by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). 國立清華大學化學系碩士論文.
(47) 黃哥弋耀. (2005) The studies of substrate reaction mechanism mediated by Particulate Methane Monooxygenase (pMMO) from M. capsulatus(Bath). 國立成功大學化學研究所碩士論文.
(48) Shih, Y. P., Kung, W. M., Chen, J. C., Yeh, C. H., Wang, A. H., and Wang, T. F. (2002) High-throughput screening of soluble recombinant proteins. Protein Sci 11, 1714-9.
(49) Havlis, J., Thomas, H., Sebela, M., and Shevchenko, A. (2003) Fast-Response Proteomics by Accelerated In-Gel Digestion of Proteins. Anal. Chem. 75, 1300-1306.
(50) Rajendra, P. S., Jean’ne M. Shreeve. (2002) Recent advances in nucleophilic fluorination reaction of organic compounds using deoxofluor and dast. Synthesis 17, 2561-2583.
(51) Lee, H. J., Basran, J., and Scrutton, N. S. (1998) Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. Biochemistry 37, 15513-22.
(52) Page, C. C., Moser, C. C., Chen, X., and Dutton, P. L. (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47-52.
(53) Nieboer, M., Kingma, J., and Witholt, B. (1993) The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Mol Microbiol 8, 1039-51.
(54) Peters, J., and Witholt, B. (1994) Solubilization of the overexpressed integral membrane protein alkane monooxygenase of the recombinant Escherichia coli W3110 (pGEc47). Biochim. Biophys. Acta 1196, 145–153.
(55) Shanklin, J., and Whittle, E. (2003) Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett 545, 188-92.
(56) May, S. W., and Abbott, B. J. (1973) Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans. J Biol Chem 248, 1725-30.
(57) Bertrand, E., Sakai, R., Rozhkova-Novosad, E., Moe, L., Fox, B. G., Groves, J. T., and Austin, R. N. (2005) Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells. J Inorg Biochem 99, 1998-2006.
(58) Tshuva, E. Y., and Lippard, S. J. (2004) Synthetic Models for Non-Heme Carboxylate-Bridged Diiron Metalloproteins: Strategies and Tactics. Chem. Rev. 104, 987-1012. |