摘要(英) |
The dispersion and carrier of gold nanoparticles recently have been achieved easily due to the development of nanofabrication technology. The catalytic activity depends on the carrier type as well as the aggregation, size distributions of nanoparticles, surface properties, interactions of carriers, and different fabrications. In this study, we adopted the conducting polymer, polyaniline (PANI), as the support material, and used a redox reaction with a mixture of AuCl3 and H2O to prepare gold nanoparticles. The gold nanoparticles were characterized by several experimental techniques, such as scanning electron microscopy (SEM), ultraviolet-visible spectroscopy and x-ray diffraction examination (XRD). Furthermore, in the Green Chemistry consideration we studied the catalytic activity of gold nanoparticles deposited on PANI in the oxidation of benzyl alcohol (C6H5CH2OH). The oxidation products, benzaldehyde (C6H5CHO) and benzoic acid (C6H5COOH), were successfully detected using the high performance liquid chromatography (HPLC). The infrared and Raman spectra show that the degrees of oxidation in polyaniline increases in the catalyst fabrication, and then the degrees of oxidation in polyaniline decreases in the oxidation of benzyl alcohol. We demonstrated that the preparation of gold nanoparticles using a mixture of AuCl3 and CHCl3 results in a better catalyst. This is due to the stronger attraction between gold nanoparticles and PANI. |
參考文獻 |
1. 閻子峰,奈米催化技術 (2004).
2. 曹茂盛、關長斌及徐甲強,奈米材料導論 (2002).
3. S. Biella, G. L. Castiglioni, C. Fumagalli, L. Prati, and M. Rossi,
Catalysis Today 72, 43 (2002).
4. H. Tsunoyama, H. Sakurai, Y. Negishi, and T. Tsukuda, J. Am. Chem.
Soc. 127, 9374 (2005).
5. D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F.
Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, and G.
J. Hutchings, Science 311, 362 (2006).
6. H. Letherby, J. Chem. Soc. 15, 16 (1862).
7. J. C. Chiang, and A. G. Macdiarmid, Synth. Met. 13, 193 (1986).
8. A. J. Epstein, J. M. Ginder, and R. W. Bigelow, Synth Met. 18, 303
(1987).
9. A. G. MacDiarmid, and A. J. Epstein, Synth Met. 29, E409 (1989).
10. 陳碧玉,國立中央大學化學研究所碩士論文 (2003).
11. S. Quillard, G. Louarn, S. Lefrant, and A. G. Macdiarmid, Phys. Rev.
B 50, 12496 (1994).
12. I. Harada, Y. Furukawa, and F. Ueda, Synth. Met. 29, E303 (1989).
13. Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima, and T.
Kawagoe, Macromolecules 21, 1297 (1988).
14. M. Cochet, G. Louarn, S. Quillard, M. I. Boyer, J. P. Buisson, and S.
Lefrant, J. Raman Spectrosc. 31, 1029 (2000).
15. C.-H. Choi, and M. Kertesz, Macromolecules. 30, 620 (1997).
16. M. Tagowska, B. Palys, and K. Jackowska, Synth. Met. 142 223 (2004).
17. J. G. Masters, Y. Sun, A. G. Macdiarmid, and A. J. Epstein, Synth.
Met. 41-43, 715 (1991).
18. 魏碧玉與賴明雄,工業材料, 153,113 (1999).
19. C. A. Foss, Jr., G. L. Hornyak, J. A. Stockert, and C. R. Martin, J.
Phys. Chem. 98, 2963 (1994).
20. S. L. Cumberland, and G. F. Strouse, Langmuir 18, 269 (2002).
21. N. H. Jang, Bull. Korean Chem. Soc. 25, 1392 (2004). |