博碩士論文 93223016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.145.177.173
姓名 林紀昌(Chi-Chang Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 複合高分子電解質
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有機-無機奈米複合材料為高分子電解質帶來許多電性與熱性質上的改善,除了優越的機械穩定性、高離子導電度、大的電化學穩定區間之外,尚能提供與電極良好的介面穩定性。
針對本研究所製備之二氧化鈦奈米管以及經過高分子表面修飾的二氧化鈦奈米管,使用XRD、NMR、XPS、TEM、TGA等儀器進行鑑定。將修飾後的二氧化鈦奈米管進一步製備成複合高分子電解質,由SEM表面型態觀察到相容性的提升,由離子導電度的分析也證實經修飾後,相較於僅只是摻合的方式,能有效提升導電度超過一個級數(order)。XPS及FT-IR的分析則指出鋰鹽在電解質系統中能有效的解離,減少離子對的情形。
藉由AC-Impedance與DSC的研究,顯示在不同製備條件的複合高分子電解質中,不僅二氧化鈦奈米管能有效藉由短暫交聯結構的形成,使高分子重組作用降低、增加非結晶區塊,並延緩剩餘高分子結晶區塊的結晶速率;同時也發現發現,小分子量高分子的採用能有效提高離子導電度;適當的成膜溶劑選擇,除了能提供高介電常數促使鹽類解離外,還能利用奈米管的特殊表面微結構或是管徑中空的位置做溶劑儲存(retain)的功用,即使在高溫(90°C)也不會逸失;不同鋰鹽的使用,也能從導電度行為上觀察到二氧化鈦、高分子與鋰鹽之間的作用是否於一開始就已達平衡狀態,亦或需要做一高溫的熱催化,來促使三者間的作用或配對情形達平衡狀態;使用不同合成製備方式的二氧化鈦奈米管,也能觀察到由於其表面結構缺陷濃度的不同,而影響導電度及高分子熱性質的行為。最後,發現在複合交聯型高分子電解質的系統中,酚醛樹酯與高分子所形成相互貫穿的網狀區塊,能有效限制高分子的結晶行為,交聯劑的添加則大幅提昇的薄膜的機械穩定性,而二氧化鈦奈米管的使用,則避免了結構交聯過度所帶來導電度的大幅衰退。
摘要(英) Organic-inorganic nano-composite bring lots of improvements in electric and thermal properties, such as excellent mechanical stability, higher ionic conductivity and wide electrochemical stability, and also provide better interface stability with electrode.
This research focus on the preparation of TiO2 nano-tube and surface modification of TiO2 nano-tube with polymer which can be characterized by using XRD, NMR, XPS, TEM and TGA etc. Composite polymer electrolyte made by surface modified TiO2 nano-tube exhibit better compatibility from SEM surface morphology observation and an increase in ionic conductivity more than one order than that of blending ones. XPS and FT-IR also indicated polymer electrolyte containing TiO2 nano-tube can efficaciously dissociate the lithium salt and decrease the ion-pairing occurring.
Composite polymer electrolyte made with a number of variable components were systematically study to find their impact upon the electrochemical properties of the resulting materials. TiO2 nano-tube surface group can act as a cross-linking center for the polymer segments, which reduced the polymer reorganization, increased amorphous domain and delay the rate of recrystallization. It’s generally observed the lower molecular weight samples yielded the higher ionic conductivity. A proper choice of solvent will not only increase the order of salt dissociation but also can be stored in TiO2 tubular microstructure. Conductivity behavior suggested specific salt will re-distribute between TiO2 nano-tube and polymer chain to reach equilibrium state. TiO2 nano-tube with different `concentration of surface defect will be a critical factor affect the conductivity and thermal proper of polymer electrolyte.
In the composite/cross-linking polymer electrolyte, the interpenetrating network structure between phenolic and polymer chain can be efficiently hindered polymer crystallization, the cross-linker promoted mechanical stability, and the using of TiO2 nano-tube avoid the dramatically fadedness of conductivity came from over cross-linking.
論文目次 中文摘要………………………………………………………….………I
英文摘要……………………………………………………………......III
謝誌……………………………………………………………………...V
目錄……………………………………………………………………..VI
表目錄…………………………………………………………….……. X
圖目錄…………………………………………………………......….. XII
第一章 緒論……………………………………………………….…1
1-1 前言……………………………………………………………….…1
1-2 鋰電池與鋰二次電池簡介……………………………………….…2
1-3 高分子電解質簡介………………………………………………….6
1-4 固態高分子電解質……………………………………………….…6
1-4-1 交聯高分子電解質(Cross-link Polymer Electrolyte)…....…7
1-4-2 共聚高分子電解質(Block-Copolymer Electrolyte)……..…8
1-4-3 接枝高分子電解質(Graft/Comb Polymer Electrolyte)….…8
1-4-4 混摻高分子電解質(Blend Polymer Electrolyte)…………9
1-4-5 複合高分子電解質(Composite Polymer Electrolyte)…....9
1-4-6 單離子高分子電解質(Single-ion Polymer Electrolyte)…..10
1-4-7 Polymer - in – Salt Polymer Electrolyte………………….….11
1-4-8 Ormolytes/Ormocer(Organically Modified CERamics)……11
1-5 膠態高分子電解質……………………………………………...…12
1-6 微孔型高分子電解質………………………………………...……14
1-7 溫度效應對高分子電解質導電度的影響………………...………16
1-8 研究動機與目的………………………………………………...…17
1-9 第一章參考文獻…………………………………………...………19
第二章 文獻回顧…………………………………………..………24
2-1 高分子電解質之發展………………………………………….…..24
2-2 奈米複合(nano-composite)高分子電解質發展…………….……27
2-3 二氧化鈦之發展…………………………………………...………30
2-3-1 二氧化鈦奈米管之製備……………………….…...………33
2-4 Novolac type酚醛樹酯…………………………………….……..37
2-4-1 酚醛樹酯的特性…................................................................37
2-4-2 Novolac type酚醛樹酯與聚氧化乙烯摻合之研究探討…38
2-5 交聯劑六甲烯基四胺的特性……………….…………...………...39
2-6 第二章參考文獻…………………………………………...………40
第三章 實驗及儀器原理……………………………………..……47
3-1 樣品製備………………………………………………………...…47
3-1-1 二氧化鈦奈米管之合成(TiO2 nano-tube)………...………47
3-1-2 修飾型二氧化鈦奈米管之複合高分子電解質……………47
3-1-3 混摻型二氧化鈦奈米管之複合高分子電解質……………48
3-1-4 不同製備條件之複合高分子電解質………………………49
3-1-5 三相複合高分子電解質……………………………………49
3-2 實驗藥品……………………………………………………...……50
3-3 實驗儀器設備………………………………………………...……52
3-4 分析儀器應用理論……………………………………………...…53
3-4-1 微差掃瞄熱卡計(DSC)……………………………………53
3-4-2 熱重分析儀(TGA)…………………………………..……..54
3-4-3 傅立葉式紅外線吸收光譜儀(FT-IR)……………….…….55
3-4-4 掃瞄式電子顯微鏡(SEM)………………………..………..56
3-4-5 交流阻抗分析儀(AC Impedance)…………………………57
3-4-6 電化學穩定度量測(LSV)……………………………...….68
3-4-7 電池組裝與充放電量測(charge / discharge capacity)……70
3-4-8 X光繞射儀(XRD)………………………………….…….71
3-4-9 氮氣等溫吸附/脫附儀(ASAP)………………………..……72
3-4-10 核磁共振儀(Solid-state NMR)……………………………75
3-4-11 射線光電子能譜儀(XPS)…………………………..…….77
第四章 結果與討論…………………………………………...……79
4-1 二氧化鈦奈米管結構分析…………………………………...……81
4-1-1 X光繞射結構分析(XRD)………………………..………81
4-1-2 氮氣等溫吸附/脫附測量(ASAP)………………………83
4-1-3 熱重損失分析(TGA)……………………………………85
4-1-4 傅立葉紅外線(FT-IR)光譜分析………………………..87
4-1-5 穿透式電子顯微鏡分析(TEM)………………….……..88
4-1-6 掃瞄式電子顯微鏡分析(SEM)…………………..……..90
4-1-7 1H固態核磁共振儀分析(solid-state NMR)……………92
4-1-8 X光射線光電子光譜分析(XPS)……………………….94
4-2 二氧化鈦奈米管之修飾及其複合高分子電解質探討……...……99
4-2-1 掃瞄式電子顯微鏡分析(SEM)……………………….100
4-2-2 熱重損失分析(TGA)……….…………………….……102
4-2-3 傅立葉紅外線光譜分析(FT-IR)…………………….…105
4-2-4 X光繞射結構分析(XRD)……………………….……108
4-2-5 X光射線光電子光譜分析(XPS)……………………..110
4-2-6 13C固態核磁共振儀分析(solid-state NMR)…………..114
4-2-7 微分掃瞄熱卡計分析(DSC)……………………………117
4-2-8 X光繞射光譜在高分子電解質之分析(XRD)………..120
4-2-9 傅立葉紅外線光譜在高分子電解質之分析(FT-IR)…122
4-2-10 X光射線光電子光譜在高分子電解質分析(XPS)…128
4-2-11 交流阻抗儀在高分子電解質之分析(AC-Impedance)..132
4-3 不同製備條件對複合高分子電解質之影響與探討………….…139
4-3-1 微分掃瞄熱卡計分析(DSC)……………………………140
4-3-2 交流阻抗儀之分析(AC-Impedance)………………..…146
4-4 三相複合高分子電解質……………………………………...…..152
4-4-1 微分掃瞄熱卡計分析(DSC)……………………………153
4-4-2 交流阻抗儀在高分子電解質之分析(AC-Impedance).....159
4-5 第四章參考文獻…………………………………………...……..164
第五章 結論與未來展望………………………………………..167
參考文獻 第一章參考文獻
1. 孫清華, 最新可充電電池技術大全, 90年6月
2. S.Yoda and K. Ishihara, J. Power Sources, 1999, 81/82, 162
3. 薛立人, 二次電池之回顧與展望, 工業材料, 1999, 146, 70
4. E. Peled, J. Electrochem. Soc., 1979, 126, 2047
5. E.Peled; D. Golodnitsky; G. Ardel and V. Eshkenazy, Electrochim. Acta, 1995, 40, 2197
6. E.Peled; D. Golodnitsky and G. Ardel, J. Electrochem. Soc., 1997, 144, L208
7. E.Peled; D. Golodnitsky and J. Penciner, The anode/electrolyte interface, in Handbook of Battery Materials, J. O. Besenhard, Editor, p.419-456, Wiley-VCH, Weinheim, Germany, 1999
8. Y. Ein-Eli, Electrochem. Solid-State Lett., 1999, 2, 212
9. B. Scrosati, J. Electrochem. Soc., 1992, 139, 2776
10. Selim, R. and Bro, P., J. Electrochem. Soc., 1974, 121, 1457
11. Raul, R. D.; Brummer, S. B., Electrochim. Acta, 1977, 22, 75
12. Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, A.; Luski, S.;Carmeli, Y.; Yamin, H., J. Electrochem. Soc., 1995, 142, 2882
13. Ein-Eli, Y.; Markovsky, B.; Aurbach, D.; Carmeli, Y.; Yamin, H.; Luski, S., Electrochim. Acta, 1994, 39, 2559
14. Chusid, O.; Ein Ely, Y.; Aurbach, D.; Babai, M.; Carmeli, Y., J. Power Sources, 1993, 43/44, 47
15. Aurbach, D.; Ein-Eli, Y.; Chusid, O.; Carmeli, Y.; Babai, M.; Yamin, H., J. Electrochem. Soc., 1994, 141, 603
16. Ein-Eli, Y., Electrochem. Solid-State Lett., 1999, 2, 212
17. Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W., J. Power Sources, 1993, 54, 228
18. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1996, 143, L195
19. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1997, 144, 1159
20. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993, 140, 922
21. Wilkinson, D.; Dahn, J. R. U.S. Patent 5, 130, 211, 1992
22. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993, 140, L101
23. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993, 140, 922
24. Wang, C.; Nakamura, H.; Komatsu, H.; Yoshio, M.; Yoshitake, H., J. Power Sources, 1998, 74, 142
25. Simon, B.; Boeuve, J. P. U.S. Patent 5, 626, 981, 1997
26. Barker, J.; Gao, F. U.S. Patent 5, 712, 059, 1998
27. Naruse, Y.; Fujita, S.; Omaru, A. U.S. Patent 5, 714, 281, 1998
28. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U., Electrochim. Acta, 2002, 47, 1423
29. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M., J. Electrochem. Soc., 1999, 146, 470
30. Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D., Electrochim. Acta, 2000, 45, 1893
31. Matsuo, Y.; Fumita, K.; Fukutsuka, T.; Sugie, Y.; Koyama, H.; Inoue, K., J. Power Sources, 2003, 119/121, 373
32. Blomgren, G. E., J. Power Sources, 2003, 119/121, 326
33. Proceedings of 2004 Taipei International Power Forum, The Solid Electrolyte Interface(SEI)in Lithium Batteries:Understanding and Misunderstanding, 2004, B-5
34. Xu, K, Chem. Rev., 2004, 104, 4303
35. Meyer W. H., Adv. Mater., 1998, 10, 439
36. Tonge, J. S.; Shriver, D. F., J, Electrochem. Soc., 1987, 134, 269
37. Fauvarque, J. F., Electrochimica Acta, 2000, 40(13-14), 2295
38. Gozdz, A.S.; Tarascon, J.M.; Warren, P.C.; Schmutz, C.N., Shokoohi, F.K., Proceedings of the Fifth International Symposium on Polymer Electrolyte, Uppsala, Sweden, 11-16 August, 1996, Paper0-12
39. Shriver, D. F., Macromolecules, 1986, 19, 1508
40. Shibata, M., Kobayash, T., European Polymer Journal, 2000, 36, 485
41. Fujinami, T.; Tokimune, A.; Mehta, M. A.; Shriver, D. F.; Rawsky, G. C., Chem. Mater. 1997, 9, 2236
42. Mandal, B. K.; Walsh, C. J.; Sooksimuang, T.; Behroozi, S. J., Chem. Mater. 2000, 12, 6
43. Angell, C. A.; Liu, C.; Sanzhez, E., Naure, 1993, 362(6416), 137
44. deAzevedo, E. R. ; Reichert, D.; Vidoto, E. L. G.; Dahmouche, K.; Judeinstein, P., Chem. Mater., 2003, 15, 2070
45. Judeinstein, P.; Brik, M. E.; Bayle, J. P.; Courtieu, J.; Rault, J., Mater. Res. Soc. Symp. Proc., 1994, 346, 937
46. Brik, M. E.; Titman, J. J.; Bayle, J. P.; Judeinstein, P., J. Polym.Sci., Part B: Polym. Phys., 1996, 34, 2533
47. Lesot, P.; Chapuis, S.; Bayle, J. P.; Rault, J.; Lafontaine, E.; Campero, A.; Judeinstein, P., J. Mater. Chem., 1998, 8, 147
48. Feullade, G. P.J. Perche, Appl. Electrochem., 1975, 63, 5
49. Kim, Y. T.; Smotkin, E. S., Solid State Ionics, 2002, 149, 29
50. Ito, Y.; Kanehori, K.; Miyauchi, K.; Kudo, T., J. Mater. Sci., 1987, 22, 1845
51. Watanabe, M.; Kanba, M.; Matsuda, H.; Mizoguchi, K.; Shinohara, I.; Tsuchida, E., Chem.-Rapid. Commun., 1981, 2, 741
52. Gozdz,A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5, 418, 091, 1995
53. Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5, 296, 318, 1994
54.Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M.; Warren, P. C. U.S. Patent 5, 418, 091, 1995
55. Gozdz, A. S.; Schmutz, C. N.; Warren, P. C. U.S. Patent 5, 460, 904, 1995
56. Sekhon, S. S.; Singh, H. P., Solid State Ionics, 2002, 152-153, 169
57. Teeter, D.; Stephan, A. M., Electrochimica Acta, 2003, 48, 2143
58. Kim, D. W.; Sun, Y. K., J. Power Sources, 2001, 102, 41
59. Michot, T.; Nishimoto, A.; Watanabe, M., Electrochaimica Acta, 2000, 45, 1347
60. Boudin, F.; Andrieu X.; Jehoulet, C., J. Power Sources, 1999, 81/82, 804
61. Murata, K.; Izuchi, S.; Yoshihisa Y., Electrochimica Acta, 2000, 45, 1501
62. M. B. Armand, J. M. Chabagno, M. J. Duclot, “ Fast Ion Transport in Solids “, P. Vashishta, J. N. Mundy, and G. K. Shenoy, Editors, p131, NorthHolland, NewYork, 1979
第二章參考文獻
1. Fenton, D. E.; Parker, J. M.; Wright, P. V., Polymer, 1973, 14, 589.
2. Wright, P. V., Polymer, 1975, 7, 319
3. Armand, M. B.; J. M. Chabagno, M. J. Duclot, Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, September 20-22 (1978).
4. Weston, J. E.; Steele, B. C. H., Solid State Ionics, 1981, 2, 347
5. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.B.; Chabagno, J.M.; Rigaud, P., Solid State Ionics, 1983, 11, 91
6. Shriver, D. F.; Ratner, M. A.; Chem. Rev., 1988, 88, 109
7. Bruce, P. G., Electrochimica Acta, 1995, 40(13-14), 2077
8. Christie, A. M.; Lisowska, O. A.; Vincent, C. A., Electrochimica Acta, 1995, 40(13-14), 2405
9. Christie, L.; Los, P.; Bruce, P. G., Electrochimica Acta, 1995, 40(13-14), 2159
10. Le Granvalet-Mancini, M.; Hanrath, T.; Teeters, D., Solid State Ionics, 2000, 135(1-4), 283
11. Borghini, M. C.; Mastragostino, M.; Zanelli, A., Journal of Power Sources, 1997, 68(1), 52
12. Benrabah, D.; Sanchez, J. Y.; Armand, M., Solid State Ionics, 1993, 60, 87
13. Benrabah, D.; Sanchez, J. Y.; Deroo, D.; Armand, M., Solid State Ionics, 1994, 70/71, 157
14. Kao, H. M.; Tsai, Y. Y.; Chao, S. W., Solid State Ionics, 2005, 176(13-14), 1261
15. Rajendran, S.; Mahendran, O.; Kannan, R., Journal of Physics and Chemistry of Solids, 2002, 63(2), 303
16. Itoh, T.; Horii, S.; Uno, T.; Kubo, M.; Yamamoto, O., Electrochimica Acta, 2004, 50(2-3), 271
17. Ramesh, S.; Arof, A.K., Materials Science and Engineering: B, 2001, 85(1), 11
18. Wang, Q.; Gao, J.; Qian, Y., European Polymer Journal, 1996, 32(3), 299
19. Aldissi, M., Journal of Power Sources, 2001, 94(2), 219
20. Morales, E.; Acosta, J. L., Solid State Ionics, 1998, 111(1-2), 109
21. Park, C. H.; Kim, D. W.; Prakash, J.; Sun, Y. K., Solid State Ionics, 2003, 159(1-2), 111
22. Forsyth, M.; Meakin, P. M.; MacFarlane, D. R., Electrochimica Acta, 1995, 40(13-14), 2339
23. Rajendran, S.; Sivakumar, M.; Subadevi, R., Materials Letters, 2004, 58(5), 641
24. Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S., Materials Chemistry and Physics, 2002, 74(1), 98
25. Edelmann, K.; Sandner, B., Solid State Ionics, 2004, 170(3-4), 225
26. Pradhan, D. K.; Samantaray, B. K.; Choudhary, R. N. P.; Thakur, A. K., Journal of Power Sources, 2005, 139(1-2), 384
27. Yang , X. Q.; Lee, H. S.; Hanson, L.; McBreen, J.; Okamoto, Y., Journal of Power Sources, 1995, 54(2), 198
28. Michael, M. S.; Jacob, M. M. E.; Prabaharan, S. R. S.; Radhakrishna, S., Solid State Ionics, 1997, 98(3-4), 167
29. 洪傳獻, chemistry, 1999, 57, 175
30. Weston, J.; Steel, B.C.H., Solid State Ionics, 1982, 7, 75
31. Wieczorek, W.; Zalewska, A.; Raducha, D.; Florjanczyk, Z.; Stevens, J.R., J. Phys. Chem. B, 1998, 102, 352.
32. Best, A.S.; Adebarhr, J.; Jacobsson, P.; MacFarlane, D.R.; Forsyth, M., Macromolecules, 2001, 34, 4549
33. Croce F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B., J. Phys. Chem. B, 1999, 103, 10632
34. Wierzovek, W.; Lipka, P.; Zukowska, G.; Wycislik, H., J. Phys. Chem. B, 1998, 102, 6968
35. A.S. Best, A. Ferry, D.R. MacFarlane, M. Forsyth, Solid State Ionics, 1999, 126(3-4), 269
36. Kumar, B.; Scanlon, L.G., Solid State Ionics,1999, 124(3-4), 239
37. Shin, J. H.; Alessandrini, F.; Passerini, S., J. Electrochem. Soc., 2005, 152, A283.
38. Li, X.; Zhao, Y.; Cheng, L.; Yan, M.; Zheng, X.; Gao, Z.; Jiang, Z., J. Solid State Electrochem., 2005, 9, 609.
39. Ahn, J. H.; Wang, G. X.; Liu, H. K.; Dou, S. X., J. Power Sources, 2003, 119-121, 422.
40. Xi, J.; Tang, X, Electrochimica Acta, 2005, 50(27), 5293
41. Reddy, M. J.; Chu, P. P., Journal of Power Sources, 2004, 135(1-2), 1
42. Chu, P. P.; Reddy, M. J.; Kao, H. M., Solid State Ionics, 2003, 156(1-2),141
43. Sun, H. Y.; Sohn, H. J.; Yamamoto, O.; Imanishi, N., J. Electrochem. Soc., 1999, 146, 1672
44. Sun, H.Y.; Takeda, Y.; Imanishi, N.; Yamamoto, O.; Sohn, H. J., J. Electrochem. Soc., 2000, 147, 2462
45. Itoh, T.; Ichikawa, Y.; Uno, T.; Kubo, M.; Yamamoto, O., Solid State Ionics, 2003, 156, 393
46. Liao, C. S.; Ye, W. B., Materials Chemistry and Physics, 2004, 88(1), 84
47. Liao, C. S.; Ye, W. B., Electrochimica Acta, 2004, 49(27), 4993
48. Liu, Y.; Lee, J. Y.; Hong, L., Journal of Power Sources, 2002, 109, 507
49. 莊萬發, 超微粒子理論應用, 1998(民87)
50. Croce, F.; Appetecchi, G. B.; Croce, F. Nature 1998, 394, 456
51. Appetecchi, G. B.; Croce, F.; Persi, L.; Ronci, F.; Scrosati, B., Electrochimica Acta, 2000, 45(8-9), 1481
52. Li, Q.; Sun, H. Y.; Takeda, Y.; Imanishi, N.; Yang, J.; Yamamoto, O., Journal of Power Sources, 2001, 94(2), 201
53. Dissanayake, M.A.K.L.; Jayathilaka, P.A.R.D.; Bokalawala, R.S.P., Journal of Power Sources, 2003, 119–121, 409
54. Adebahr, J.; Byrne, N.; Forsyth, M.; MacFarlane, D.R.; Jacobsson, P., Electrochimica Acta, 2003, 48(14-16), 2099
55. Kumar, B., Journal of Power Sources, 2004, 135(1-2), 215
56. Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson J. W., J. Am. Chem. Soc., 1987, 109, 3639
57. Bastow, T. J.; Whitfield, H. J., Chem. Mater., 1999, 11, 3518
58. Gervais, C.; Smith, M. E.; Pottier, A.;Jolivet, J.-P.; Babonneau, F., Chem. Mater., 2001, 13, 462
59. Won, W. S.; Seung, B. P.; Chae, H. S.; Sang, J. M., J. Mater. Sci., 2001, 36, 4299
60. Robert, T. D.; Laude, L. D.; Geskin, V. M.; Lazzaroni, R.; Gouttebaron, R., Thin Solid Films, 2003, 440, 268
61. Sodergren, S.; Siegbahn, H.; Rensmo, H.; Lindstrom, H.; Hagfeldt, A.; Lindquist, S.-E., J. Phys. Chem. B, 1997, 101, 3087
62. Wagemaker, M.; van de Krol, R.; Kentgens, A. P. M.; van Well, A. A.; Mulder, F. M., J. Am. Chem. Soc., 2001, 123, 11454
63. Huang, S. Y.; Kavan, L.; Exnar, I., J. Electrochem. Soc., 1995, 142, L142
64. Zhang, Z.; Gong, Z. L. ; Yang Y., J. Phys. Chem. B, 2004, 108, 17546
65. Nosaka, A. Y.; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y., Langmuir, 2003, 19, 1935
66. Nosaka, A. Y. ; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y., J. Phys. Chem. B, 2004, 108, 9121
67. Zhu, H.; Shen, M.; Wu, Y.; Li, X.; Hong, J.; Liu, B.; Wu, X. L.; Dong, L.; Chen, Y., J. Phys. Chem. B, 2005, 109, 11720
68. 高濂、鄭珊、張清紅, 奈米光觸媒, 93年四月
69. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Nano Lett., 2005, 5, 191
70. Lee, S.; Jeon, C.; Park, Y., Chem. Mater., 2004, 16, 4292
71. Xiong, C.; Balkus, K. J., Jr., Chem. Mater., 2005, 17, 5136
72. Smarsly, B.; Grosso, D.; Brezesinski, T.; Pinna, N., Chem. Mater., 2004, 16, 2948
73. Wu, C.-W.; Ohsuna, T.; Kuwabara, M.; Kuroda, K., J. Am. Chem. Soc., 2006, 128, 4544
74. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Adv. Mater., 1999, 11, 1307
75. Zhang, M; Jin, Z; Zhang, J.; Guo, X.; Yang, J.; Li, W.; Wang, X.; Zhang, Z., J. Mol. Catal. A: Chem., 2004, 217, 203
76. Tsai, C.-C.; Teng, H., Chem. Mater., 2006, 18, 367
77. Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., Appl. Phys. Lett., 2003, 82, 281
78. Lazzeri, M.; Vittadini, A.; Selloni, A., Phys. Rev. B, 2001, 63, 155409
79. Oliver, P. M.; Watson, G. W.; Kelsey, E. T.; Parker S. C., J. Mater. Chem., 1997, 7, 563
80. Knop, A.; Pilato, L. A. Springer-Verlag, Berlin. 1985
81. Mottram, J. T.; Geary, B. and Taylor, R., J. Material Science, 1992, 27
82. Meier, J. F.; JR, E. M. Bellott; Frank, P. P., Journal of Applied Polymer Science, 1977, 21
83. Michot, T., Nishimoto, A., Watanabe, M., Electrochaimica Acta, 2000, 45(8-9), 1347
84. Boudin, F. Andrieu, X., Jehoulet, C. J., J. Power Sources, 1999, 81/82, 804
85. Li Jean and Khan, Ishrat, M., Macromolecules, 1993, 26, 4544
86. MA, C.C.M.; Wu, H. D.; Lee, C-T., J. Polym. Sci, part B., 1998, 36, 1721
87. Chu, P. P.; Wu, H. D.; Lee, C-T., J. Polym. Sci, part B., 1998, 36, 1647
第四章參考文獻
1. Zhang, M; Jin, Z; Zhang, J.; Guo, X.; Yang, J.; Li, W.; Wang, X.; Zhang, Z., J. Mol. Catal. A: Chem., 2004, 217, 203
2. Sasaki, T.; Komatsu, Y.; Fujiki, Y., Chem. Mater., 1992, 4, 894
3. Stephen Brunauer, Lola S. Deming, W. Edwards Deming, Edward Teller, J. Am. Chem. Soc., 1940, 62, 1723
4. Nosaka, A. Y. ; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y., J. Phys. Chem. B, 2004, 108, 9121
5. Wang, Y. Q.; Hu, G. Q.; Duan, X. F.; Sun, H. L.; Xue, Q. K., Chemical Physics Letters, 2002, 365, 427
6. Zhang, S.; Chen, Q.; Peng L.-M., Phys. Rev. B, 2005, 71, 014104
7. Zhu, H.; Shen, M.; Wu, Y.; Li, X.; Hong, J.; Liu, B.; Wu, X. L.; Dong, L.; Chen, Y., J. Phys. Chem. B, 2005, 109, 11720
8. Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S., Langmuir, 2000, 17, 2664
9. Kumar, P. M.; Badrinarayanan, S.; Sastry, M., Thin Solid Films, 2000, 358, 122
10. Kumara, B.; Scanlonb, L. G., Solid State Ionics, 1999, 124, 239
11. Forsyth, M.; MacFarlane, D.R.; Best, A.; Adebahr, J.; Jacobsson, P.; Hill A.J., Solid State Ionics, 2002, 147, 203
12. Ni Y.; Zheng S., Chem. Mater., 2004, 16, 5141
13. Liang, W.-J.; Chen, Y.-P.; Wu, C.-P.; Kuo, P.-L., J. Phys. Chem. B., 2005, 109, 24311
14. C.D. Wagner; W.M. Riggs; L.E. Davis; J.F. Moulder and G.E. Muilenberg, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, U.S.A., 1979
15. Xi, J.; Tang, X, Electrochimica Acta, 2005, 50(27), 5293
16. Wieczorek, W.; Florjanczyk, Z.; Stevens, J. R., Electrochimica Acta, 1995, 40, 2251
17. Siekierski, M.; Przyluski, J.; Wieczorek, W., Electrochimica Acta, 1995, 40, 2101
18. Chung, S.H.; Wang, Y.; Persi, L.; Croce, F.; Greenbaum, S.G.; Scrosati, B.; Plichta, E., J. Power Sources, 2001, 97-98, 644
19. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R., J. Phys. Chem. B., 1999, 103, 10632
20. Wieczorek, W.; Lipka, P.; Zukowska, G.; Wycislik, H., J. Phys. Chem. B., 1998, 102, 6968
21. Wagemaker, M.; van de Krol, R.; Kentgens, A. P. M.; van Well, A. A.; Mulder, F. M., J. Am. Chem. Soc., 2001, 123, 11454
22. Wagemaker, M.; Kearley, G. J.; van Well, A. A.; Mutka, H.; Mulder, F. M., J. Am. Chem. Soc., 2003, 125, 840
23. Olson, C. L.; Nelson, J.; Islam, M. S., J. Phys. Chem. B., 2006, 110, 9995
24. Gregg, B. A.; Chen, S. G.; Ferrere, S., J. Phys. Chem. B, 2003, 107, 3019
25. Kopidakis, N.; Neale, N. R.; Zhu, K.; van de Lagemaat, J.; Frank, A., J. Appl. Phys. Lett., 2005, 87, 202106
26. Adachi, M.; Murata, Y.; Takao, J.; Jiu, J. T.; Sakamoto, M.; Wang, F. M., J. Am. Chem. Soc., 2004, 126, 14943
27. Bisquert, J.; Vikhrenko, V. S., J. Phys. Chem. B, 2004, 108, 2313
28. Scrosati, B.; Croce, F.; Persi, L., J. Electrochem. Soc., 2000, 147(5), 1718
29. Best, A. S.; Adebahr, J.; Jacobsson, P.; MacFarlane, D. R.; Forsyth, M., Macromolecules, 2001, 34, 4549
30. Volel, M.; Armand, M.; Gorecki, W., Macromolecules, 2004, 37, 8373
31. Rosen, S. L. , Fundamental Principles of Polymeric Materials 2nd edition, Wiley Interscience, 1993
32. Gray, F. M., Polymer Electrolyte, The Royal Society of Chemistry, 1997
33. Kim, Y. W.; Lee, W.; Choi, K., Electrochimica Acta, 2000, 45, 1473
34. Cheung, I.W.; Chin, K.B.; Greene, E.R.; Smart, M.C.; Abbrent, S.; Greenbaum, S.G.; Prakash, G.K.S.; et. al., Electrochimica Acta, 2003, 48, 2149
35. Florian Muller-Plathe; Wilfred F. van Gunsteren, Journal of Chemistry Physics, 1995, 103, 4745
36. Wu, H.-D.; Chu, P. P.; Ma, C.-C. M.; Chang, F.-C., Macromolecules, 1999, 32, 3097
37. 邱伯寧, 中央大學化學研究所碩士論文, 93年7月
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明