博碩士論文 93223038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.143.235.104
姓名 陳家原(Chia-Yuan Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用
(New Ruthenium-BasedPhotosensitizers IncorporatingOligothiophene Substituted1,10-Phenanthroline or BipyridineLigand for Dye-Sensitized SolarCells )
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討
★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成
★ 含雙噻吩環戊烷之電變色高分子的研究★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池
★ 高品質導電聚苯胺薄膜的合成及應用★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討
★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池
★ 染料敏化太陽能電池用二茂鐵系統電解質的探討★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池
★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用★ Design and Synthesis of Ruthenium Dyes for High Open-circuit Voltage Dye-sensitized Solar Cells
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要合成三個新的含雙吡啶或二氮雜啡衍生物配位基之
釕(Ruthenium)金屬錯合物:CYC-P1、CYC-P2 以及CYC-B1,並探討
其物理性質及在染料敏化太陽能電池(Dye-Sensitized Solar Cells,
DSSCs)中作為光敏劑(Photosensitizers)的應用。三個錯合物皆採用
One-pot 的合成方法合成,並利用NMR、IR 與Mass 光譜鑑定其結構,
亦利用理論計算(Semi-empirical ZINDO/1)得知錯合物之HOMOs 與
LUMOs 的定域性(Localization),以剖析Frontier orbitals 的位置與錯
合物吸光性質之關連性,因CYC-P1、CYC-P2 與CYC-B1 等吸光能
力的差異性主要和其frontier orbitals 的位置(特別是HOMO 部份)有
關。當延長錯合物上ancillary ligand 的共軛長度時,可降低錯合物的
MLCT (metal-to-ligand charge transfer) transition 的能量,但同時也會
降低此吸收峰的吸收係數,這主要是由於錯合物HOMO 的組成有一
部份是來自於ancillary ligand 的貢獻。其中CYC-B1 的吸光係數大於
文獻上所報導所有應用於DSSCs 領域之釕金屬錯合物,因此,
CYC-B1 敏化之電池元件具有最高的短路電流密度(23.92 mA/cm2)。
在AM1.5 光源照射下,以CYC-P1、CYC-P2 以及CYC-B1 敏化之
電池元件的光電轉換效率分別為6.01%、3.42 %、與8.54 %。在相同
iv
元件組裝與量測條件下,N3 敏化之電池元件的短路電流密度與光電
轉換效率分別為21.32 mA/cm2與7.7 %。
摘要(英) i
Abstract
Three new ruthenium complexes (CYC-P1, CYC-P2, and CYC-B1)
with the general chemical formula of [Ru(dcbpy)(L)(NCS)2] where dcbpy
is 4,4’-dicarboxylic acid-2,2’-bipyridine and L is 3,8-bis-(4-octyl-thiophen-
2-yl)-1,10-phenanthroline, 3,8-bis(4-octyl-5-(4-octyl-thiophen-2-
yl)- thiophen-2-yl)-1,10-phenanthroline, or 4,4’-bis- (4’-octyl-bithiophen-
2-yl)-2,2’-bipyridine were prepared and well characterized. The
performance of these dye-sensitized solar cells was also explored. These
complexes were synthesized via the typical one-pot synthesis and
identified with NMR, IR and Mass spectroscopy. In addition, the
localizations of HOMOs and LUMOs of these Ru-complexes were
calculated with the semi-empirical computation (ZINDO/1) in order to
understand the effects of the frontier orbitals on the light harvesting
capability of the photosensitizers. It was found that the difference in light
harvesting ability between CYC-P1, CYC-P2 and CYC-B1 is associated
mainly with the location of the frontier orbitals, especially the HOMO.
Increasing the conjugation length of the ancillary ligand decreases the
energy of the MLCT (metal-to-ligand charge transfer) transition but at the
same time reduces the molar absorption coefficient, due to the HOMO
located partially on the ancillary ligand, of the ruthenium complex. The
molar absorption coefficient of lower-energy MLCT band of CYC-B1 is
very high: higher than all of the reported Ru complexes used in DSSCs.
Therefore, the highest short-circuit current density (23.92 mA/cm2) for
CYC-B1-sensitized solar cell was achieved. Under the illumination of
ii
AM1.5 stimulated light, the photon-to-current conversion efficiency of
CYC-P1, CYC-P2 and CYC-B1 sensitized cells was 6.01 %, 3.42 % ,
and 8.54 % respectively. Under the same device fabrication and
measuring procedures, the short-circuit current density and conversion
efficiency of N3-sensitized cell were 21.32 mA/cm2 and 7.7 %
respectively.
關鍵字(中) ★ 釕錯合物
★ 染料敏化太陽能電池
關鍵字(英) ★ ruthenium complex
★ dye-sensitized solar cell
論文目次 Table of Contents
Abstract…………………….……………………………...…………i
摘要…………………….……………………………….......…...……iii
Chapter I: Introduction
Chapter I-1: Motivation of the research………………………...1
Chapter I-2: Photosynthesis and Dye-sensitized Solar Cells
I-2.1 Introduction of the photosynthesis…...……………………………..2
I-2.2 Introduction of the dye-sensitized solar cells (DSSCs)…………….4
I-2.3 The architecture of dye-sensitized solar cells……….…………….5
I-2.4 The performance of dye-sensitized solar cells- incident photon to
current conversion efficiency (IPCE) and overall conversion
efficiency (η)……………………...…………………………….….7
Chapter I-3: Metal Oxide Semiconductors for Dye-sensitized
Solar Cells
I-3.1 Introduction ……………………..……...…………………………10
I-3.2 Preparation and morphology of mesoporous oxide semiconductor
films……………………………………………………………....11
I-3.3 Development of mesoporous oxide semiconductor films…………13
I-3.4 Charge transfer in mesoporous oxide semiconductor films……….15
Chapter I-4: Mediators for Dye-sensitized Solar Cells
I-4.1 Introduction of the mediators……………………………………...17
I-4.2 Typical mediator-iodide/ tiiodide based liquidelectrolytes……...18
I-4.3 Quasi-solid (gel) electrolytes…………………………………...…18
I-4.4 Additives for the liquid/gel electrolytes…………………………19
I-4.5 Metal complexes as the electron transfer mediators………………21
I-4.6 Inorganic hole-transport materials………………………………...21
I-4.7 Organic hole transport materials……………………………….….22
I-4.8 Conjugate polymers as the hole-transport materials…….………...24
Chapter I-5: Photosensitizers for Dye-sensitized Solar Cells
I-5.1 Introduction of the photosensitizers………………………….……24
I-5.2 Metalloporphyrins as the photosensitizers………………………25
I-5.3 Metal-free organic dyes…………………………………………...26
I-5.4 Photosensitizers developed by the team of Grätzel……………….30
I-5.5 Ru photosensitizers containing thiophene subunits……………….39
Chapter II: Experimental section
Chapter II-1: Chemicals……………………………….………….42
Chapter II-2: Preparation procedures
II-2.1 Synthesis of 4,4’-dibromo-2,2’-bipyridine……………………….44
II-2.2 Synthesis of 2-Octyl-bithiophene (OBT)…………………….…..49
II-2.3 Synthesis of 4,4’-di-2-Octyl-5-(thiophen-2-yl)
thiophen-2-yl-2,2’-bipyridine (abtpy)……………………...…….49
II-2.4 Syntheses of novel ruthenium complexes (CYC-P1, CYC-P2 and
CYC-B1)……………………………………………………..…...52
II-2.5 Physicochemical studies & semiempirical computation…………58
II-2.6 Preparation of TiO2 electrode and DSSCs device fabrication...…60
Chapter III: Results and discussion
Chapter III-1: CYC-P1 & CYC-P2
III-1.1 Synthesis and characterization of CYC-P1 & CYC-P2….……...63
III-1.2 Light-harvesting capacities of CYC-P1 & CYC-P2…………….67
III-1.3 Theoretical investigation of frontier orbitals for CYC-P1 &
CYC-P2………………………………………………..……..…70
III-1.4 Energy level of the frontier orbitals of CYC-P1 & CYC-P2……73
III-1.5 The performance of CYC-P1 or CYC-P2 sensitized solar cells...76
Chapter III-2: Results & discussion of CYC-B1 dye
III-2.1 Synthesis and characterization of CYC-B1……………………80
III-2.2 TG analysis of CYC-B1…………………………………………83
III-2.3 Super efficient light-harvesting capacities of CYC-B1………….84
III-2.4 The frontier orbitals of CYC-B1………………………...……...86
III-2.5 Energy level of the frontier orbitals of CYC-B1.……..…………88
III-2.6 The performance of CYC-B1 sensitized solar cells……………..90
III-2.7 The effect of concentration on the performance of CYC-B1
sensitized cell…………………………………………………..93
III-2.8 Solvent effect on the performance of CYC-B1……………….....96
III-2.9 The effect of additive 4-tBP on the performance of CYC-B1
sensitized cell……………………………………………....….100
Chapter IV: Conclusions
Reference……………………………………...........................….103
參考文獻 1. A. L. Lehninger, D. L. Nelson, M. M. Cox, Principles of Biochemistry,
Worth Publishers, Inc., 2nd Ed., 1993, p.571.
2. http://biology.clc.uc.edu/courses/bio104/photosyn.htm.
3. http://www.life.uiuc.edu/govindjee/photoweb/.
4. B. O’Regan, M. Grätzel, Nature 1991, 353, 737.
5. A. Hagfeldt, M. Grätzel, Chem, Rev. 1995, 95, 49.
6. M. Grätzel, Nature 2001, 414, 338.
7. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
8. K. Tennakone, G. R. R. Kumara, I. R. M. Kottegoda, V. S. P. Perera,
Chem. Commun. 1999, 15.
9. K. Sayama, H. Suguhara, H. Arakawa, Chem. Mater. 1998, 10, 3825.
10. S. Bhattacharyya, E. Kymakis, G. A. J. Amaratunga, Chem. Mater.
2004, 16, 4819.
11. N. Vlachopoulos, P. Liska, J. Augustynski, M. Grätzel, J. Am. Chem.
Soc. 1988, 110, 1216.
12. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H.
Spreitzer, M. Grätzel, Nature 1998, 395, 583.
13. B. O’Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Grätzel, Adv.
Mater. 2000, 17, 1263.
14. K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 1998, 77, 347.
15. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga,
K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 2003, 107,
597.
b
16. M. Grätzel, J. Photochem. A 2004, 164, 3.
17. X. Liu, A. Yamilov, X. Wu, J.-G. Zheng, H. Cao, R. P. H. Chang,
Chem. Mater. 2004, 16, 5414.
18. L. Yanhong, W. Dejun, Z. Qidong, Y. Min, Z. Qinglin, J. Phys. Chem.
B. 2004, 108, 3202.
19. G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L.
Palmisano, V. Rives, M. Schiavello, R. J. D. Tilley, A. M. Venezia, J.
Phys. Chem. B. 2001, 105, 1026.
20. M. H. Zhao, Z. L. Wang, S. X. Mao, Nano Lett. 2004, 4, 587.
21. M. Shim, P. Guyot-Sionnest, J. Am. Chem. Soc. 2001, 123, 11651.
22. Y.-G. Kim, J. Walker, L. A. Samuelson, J. Kumar, Nano Lett. 2003, 3,
523.
23. A. Giraudeau, F.-R. F. Fan, A. J. Bard, J. Am. Chem. Soc. 1980, 102,
5137.
24. (a) C. J. Barbé, F. Árendse, P. Comte, M. Jirousek, F. Lenzmann, V.
Shklover, M. Grätzel, J. Am. Ceram. Soc. 1997, 80, 3157. (b) M. K.
Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem.
B 2003, 107, 8981.
25. H. G. Yang, H. C. Zeng, J. Phys. Chem. B. 2004, 108, 3492.
26. M. Grätzel, J. Photochem. and Photobio. C: Photochem. Rev. 2003, 4,
145.
27. S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, Y. Wada,
S. Yanagida, Electrochem. Commun. 2003, 5, 804.
28. A. Kay, M. Grätzel, Chem. Mater. 2002, 14, 2930.
29. S. Chappel, S. G. Chen, A. Zaban, Langmuir 2002, 18, 3336.
c
30. Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, J. Phys. Chem. B.
2003, 107, 1977.
31. N. G. Park, M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, D. K.
Kim, J. van de Lagemaat, K.D. Benkstein, A. J. Frank, Langmuir 2004,
20, 4246.
32. H. S. Jung, J. K. Lee, M. Nastasi, S. W. Lee, J. Y. Kim, J. S. Park, K.
S. Hong, H. Shin, Langmuir 2005, 21, 10332.
33. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, J.
Am. Chem. Soc. 2003, 125, 475.
34. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, J. Am.
Chem. Soc. 2004, 126, 14943.
35. M. Zukaloya, A. Zukal, L. Kayan, M. K. Nazeeruddin, P. Liska, M.
Grätzel, Nano. Lett. 2005, 5, 1789.
36. H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, A.
Hagfeldt, J. Photochem. and Photobio. A: Chem. 2001, 145, 107.
37. M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Ysuda, G. Nelles,
Nat. Mater. 2005, 4, 607.
38. T. Oekermann, T. Yoshida, H. Minoura, K. G. U. Wijayantha, L. M.
Peter, J. Phys. Chem. B. 2004, 108, 8364.
39. T. Oekermann, T. Yoshida, C. Boeckler, J. Caro, H. Minoura, J. Phys.
Chem. B. 2005, 109, 12560.
40. Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, J. R. Durrant, J.
Phys. Chem. B. 1996, 100, 20056.
41. T. Hannappel, B. Burfeindt, W. Storck, F. Willing, J. Phys. Chem. B.
1997, 101, 6799.
d
42. J. B. Ashbury, R. J. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, T.
Lian, J. Phys. Chem. B. 1999, 103, 3110.
43. Y. Tachibana, S. A. Haque, I. P. Mercer, J. R. Durrant, D. R. Klug, J.
Phys. Chem. B. 2000, 104, 1198.
44. J. Nelson, S. A. Haque, R. D. Klug, J. R. Durrant, Phys. Rev. B. 2001,
63, 205321.
45. G. Schlichthorl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem.
B. 1997, 101, 8141.
46. N. G. Park, G. Schlichthorl, J. Van de Lagemaat, H. M. Cheong, A.
Mascarenhas, A. J. Frank, J. Phys. Chem. B. 1999, 103, 3308.
47. S. Nakadee, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata,
Y. Wada, H. Mori, S. Yanagida, J. Phys. Chem. B. 2002, 106, 10004.
48. S. Nakadee, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida,
J. Phys. Chem. B. 2003, 107, 8607.
49. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T.
Sekiguchi, M. Grätzel, Nat. Mater. 2003, 2, 402.
50. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Chem.
Commun. 2002, 374.
51. J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, Y. S. Kang, Solid State
Ionics 2005, 176, 579.
52. S. Mikoshiba, S. Murai, H. Sumino, T. Kado, D. Kosugi, S. Hayase,
Current Applied Physics 2005, 5, 152.
53. H. Matsui, K. Okada, T. Kawashima, T. Ezure, N. Tanabe, R.
Kawano, M. Watanabe, J. of Photochem. and Photobio. A: Chem.
2004, 164, 129.
e
54. P. Wang, S. M. Zakeeruddin, J. E. Moser, R. H. Baker, P. Comte, V.
Aranyos, A. Hagfeldt, M. K. Nazeeruddin, M. Grätzel, Adv. Mater.
2004, 16, 1806.
55. R. Kumar, A. K. Sharma, V. S. Parmar, A. C. Watterson, K. G.
Chittibabu, J. Kumar, L. A. Samuelson, Chem. Mater. 2004, 16, 4841.
56. M. K. Nazeeruddin, P. Pe´chy, T. Renouard, S. M. Zakeeruddin, R.
Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover,
L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gra1tzel, J. Am. Chem.
Soc. 2001, 123, 1613.
57. A. Hinsch et al., Prog. Photovoltaics 2001, 9, 425.
58. E. Stathatos, P. Lianos, S. M. Zakeeruddin, P. Liska, M. Grätzel,
Chem. Mater. 2003, 15, 1825.
59. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, J. Am.
Chem. Soc. 2003, 125, 1166.
60. P. Wang, S. M. Zakeeruddin, M. Grätzel, J. Fluorine Chem. 2004, 125,
1241.
61. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K.
Hanabusa, H. Shirai, Y. Wada, S. Yanagida, J. Phys. Chem. B. 2001,
105, 12809.
62. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Miiller, P.
Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115,
6382.
63. P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-
Baker, M. Grätzel, J. Phys. Chem. B. 2003, 107, 14336.
64. P. Wang, S. M. Zakeeruddin, R. Humphry- Baker, J. E. Moser, M.
Grätzel, Adv. Mater. 2003, 15, 2101.
f
65. P. Wang, S. M. Zakeeruddin, R. Humphry- Baker, J. E. Moser, M.
Grätzel, Chem. Mater. 2004, 16, 2694.
66. N. R. Neale, N. Kopidakis, J. V. D. Lagemaat, M. Grätzel, A. J. Frank,
J. Phys. Chem. B 2005, 109, 23183.
67. Z. Zhang, S. M. Zakeeruddin, B. C. O’Regan, R. H. Baker, M.
Grätzel, J. Phys. Chem. B 2005, 109, 21818.
68. M. Grätzel, Pure Appl. Chem. 2001, 73, 459.
69. H. Nusbaumer, J. E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin,
M. Grätzel, J. Phys. Chem. B. 2001, 105, 10461.
70. S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, C. A. Bignozzi, J.
Am. Chem. Soc. 2002, 124, 11215.
71. H. Nusbaumer, S. M. Zakeeruddin, J. E. Moser, M. Grätzel, Chem.
Eur. J. 2003, 9, 3756.
72. F. Drepper, M. Hippler, W. Nitschke, W. Haehnel, Biochemistry 1996,
35, 1282.
73. B. O'Regan, D. T. Schwartz, Chem. Mater. 1995, 7, 1349.
74. B. O’Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Grätzel, Adv.
Mater. 2000, 17, 1263.
75. B. C. O’Regan, F. Lenzmann, J. Phys. Chem. B 2004, 108, 4342.
76. S. Liu, X. Jiang, H. Ma, M. S. Liu, A. K. Y. Jen, Macromolecules
2000, 33, 3514.
77. E. Bellmann, S. E. Shaheen, S. Thayumanavan, S. Barlow, R. H.
Grubbs, S. R. Marder, B. Kippelen, N. Peyghambarian, Chem. Mater.
1998, 10, 1668.
78. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H.
Spreitzer, M. Grätzel, Nature 1998, 395, 583.
g
79. J. Kru¨ger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, Appl. Phys.
Lett. 2001, 81, 367.
80. L. Schmidt-Mende, S. M. Zakeeruddin, M. Grätzel, Appl. Phys. Lett.
2005, 86, 013504.
81. L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H.
Miura, S. Ito, S. Uchida, M. Grätzel, Adv. Mater. 2005, 17, 813.
82. W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425.
83. S. Spiekermann, G. Smestad, J. Kowalik, L. M. Tolbert, M. Grätzel,
Synthetic Metals 2001, 121, 1603.
84. Y. Saito, T. Azechi, T. Kitamura, Y. Hasegawa, Y. Wada, S. Yanagida,
Coord. Chem. Rev. 2004, 248, 1469.
85. H. Rensmo, S. So¨dergren, L. Patthey, K. Westmark, L. Vayssieres, O.
Khole, P. A. Bru¨hwiler, A. Hagfeldt, H. Siegbahn, Chem. Phys. Lett.
1997, 274, 51.
86. M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, S. I.
Goreslky, A. B. P. Lever, M. Grätzel, Coord. Chem. Rev. 2000, 208,
213.
87. T. Renouard, R. A. Fallahpour, M. K. Nazeeruddin, R. Humphry-
Baker, S. I. Gorelsky, A. B. P. Lever, M. Grätzel, Inorg. Chem. 2002,
41, 367.
88. E. Figgemeier, V. Aranyos, E. C. Constable, R. W. Handel, C. E.
Housecroft, C. Risinger, A. Hagfeldt, E. Mukhtar, Inorg. Chem.
Comm. 2004, 7, 117.
89. C. Daul, E. J. Baerends, P. Vernooijs, Inorg. Chem. 1994, 33, 3538.
90. J. E. Monat, J. H. Rodriguez, J. K. McCusker, J. Phys. Chem. A 2002,
h
106, 7399.
91. J. F. Guillemoles, V. Barone, L. Joubert, C. Adamo, J. Phys. Chem. A
2002, 106, 11354.
92. H. Zabri, I. Gillaizeau, C. A. Bignozzi, S. Caramori, M. F. Charlot, J.
Cano-Boquera, F. Odobel, Inorg. Chem. 2003, 42, 6655.
93. S. Fantacci, F. De Angelis, A. Selloni, J. Am. Chem. Soc. 2003, 125,
4381.
94. F. De Angelis, S. Fantacci, A. Selloni, Chem. Phys. Lett. 2004, 389,
204.
95. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G.
Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc.
2005, 127, 16835.
96. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. Gra1tzel, J. Phys. Chem.
B 2003, 107, 13280.
97. L. Schmidt-Mende, S. M. Zakeeruddin, M. Grätzel, Appl. Phys. Lett.
2005, 86, 013504.
98. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M.
Gra¨tzel, J. Am. Chem. Soc. 2005, 127, 808.
99. M. K. Nazeeruddin, Q. Wang, L. Cevey, V. Aranyos, P. Liska, E.
Figgemeier, C. Klein, N. Hirata, S. Koops, S. A. Haque, J. R. Durrant,
A. Hagfeldt, A. B. P. Lever, M. Gra1tzel, Inorg. Chem. 2005, 44,
178.
100. E. Figgemeier, V. Aranyos, E. C. Constable, R. W. Handel, C. E.
Housecroft, C. Risinger, A. Hagfeldt, E. Mukhtar, Inorg. Chem. Comm.
2004, 7, 117.
101. http://wwwchem.leidenuniv.nl/metprot/armand/028.html.
i
102. M. K. Nazeeruddin, R. Humphry-Baker, David L. Officer, W. M.
Campbell, A. K. Burrell, M. Grätzel, Langmuir 2004, 20, 6514.
103. Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L.
Officer, P. J. Walsh, K. Gordon, R. Humphry-Baker, M. K.
Nazeeruddin, M. Grätzel, J. Phys. Chem. B 2005, 109, 15397.
104. Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A. Suga, S.,
Sayama, K., Arakawa, H. New J. Chem. 2003, 27, 783.
105. T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc.
2004, 126, 12218.
106. T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson, Xin Ai,
T. Lian, S. Yanagida, Chem. Mater. 2004, 16, 1806.
107. K. Hara et al., Adv. Funct. Mater. 2005, 15, 246.
108. K. R. J. Thomas, J. T. Lin, Y. C. Hsu, K. C. Ho, Chem. Comun.
2005, 4098.
109. C. Houarner, E. B. Pierrick, F. Odobel, Photochem. Photobiol. Sci.
2005, 4, 200.
110. I. Murase, N. Kagaku, Zasshi, 1956, 77, 682.
111. G. Mnerker, F. H. Case, J. Am. Chem. Soc. 1958, 80, 2745.
112. D. Wenkert, R. B. Woodward, J. Org. Chem. 1983, 48, 283.
113. H. Rensmo, S. So¨dergren, L. Patthey, K. Westmark, L. Vayssieres,
O. Khole, P. A. Bru¨hwiler, A. Hagfeldt, H. Siegbahn, Chem. Phys.
Lett. 1997, 274, 51.
114. N. Hirata, J.-J. Lagref, E. J. Palomares, J. R. Durrant, M. K.
Nazeeruddin, M. Grätzel, D. Di Censo, Chem. Eur. J. 2004, 10, 595.
115. M. Yanagida, L. P. Singh, K. Sayama, K. Hara, R. Katoh, A. Islam,
H. Sugihara, H. Arakawa, M. K. Nazeeruddin, M. Grätzel, J. Chem.
Soc., Dalton Trans. 2000, 2817.
116. J. Bisquert, D. Cahen, G. Hodes, S. Ruehle, A. Zaban, J. Phys. Chem.
B 2004, 108, 8106.
117. (a) A. J. Nozik, Annu. Rev. Phys. Chem. 1978, 29, 189. (b) S. G.
Yan, J. T. Hupp, J. Phys. Chem. 1996, 100, 6867. (c) H. Gerisher,
Electrochim. Acta. 1989, 34, 1005.
118. Z. Yang, I. Sokolik, F. E. Karasz, Macromolecules 1993, 26, 1188.
119. J. D. Tovar, A. Rose, T. M. Swager, J. Am. Chem. Soc. 2002, 124,
7762.
120. S. S. Zhu, R. P. Kingsborough, T. M. Swager, J. Mater. Chem. 1999,
9, 2123.
121. D. K. Gosser, ”Cyclic Voltammetry Simulation and Analysis of
Reaction Mechanisms” VCH, N.Y. 1993, p27-68.
122. M. Grätzel, 4th Asian Photochemistry Conference, Taiwan, Jan.
5-10.
123. O. Kohle, S. Ruile, M. Grätzel, Inorg. Chem. 1996, 35, 4779.
124. M. Amirnasr, Md. K. Nazeeruddin, M. Grätzel, Thermochimica Acta
2000, 348, 105.
125. http://www.usm.maine.edu/~newton/Chy251_253/Lectures/
Solvents/ Solvents.html.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明