以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:86 、訪客IP:3.135.184.136
姓名 邱雅文(Ya-wen Chiu) 查詢紙本館藏 畢業系所 化學學系 論文名稱 順丁烯亞醯胺高分子發光二極體:分子量與聚集傾向之研究
(The Maleimide Copolymer Light-Emitting Diodes:Influence of the Polymer Molecular Weight and Aggregation Tendency)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在本論文中,我們成功地合成了一系列分子量相近的順丁烯亞醯胺共聚高分子衍生物 (M-PT8ML8-F8, PT8ML1-F8, PT1ML8-F8, PT8ML8-F1, M-PT8ML8-SP),其分子量從32700到52100。儘管沒有明顯的聚集證據,然而,藉由高分子主鏈上不同位置烷基鏈的長度縮短,的確可以增加高分子的玻璃轉移溫度(91-148 oC)。
並且,我們也聚合出兩類(PT8ML8-F8與PT8ML8-SP),但各有高、中、低三種分子量的順丁烯亞醯胺共聚高分子。從熱性質的結果來看,玻璃轉移溫度和熱裂解溫度與這兩個高分子分子量的高低與並沒有一定的關係。但是,從不同分子量的PT8ML8-F8高分子發光元件量測的比較,我們發現隨著分子量的增加,亮度與效率都隨之減少。而且,從PT8ML8-F8的發光光譜圖,也可以觀察到隨著分子量的增加,螢光或電激發光都有紅位移的趨勢。從元件的電性量測可以讓我們更加地確定,對PT8ML8-F8共聚高分子而言,分子量越小越不容易聚集。共聚高分子薄膜螢光光譜與穿透式電子顯微鏡影像都支持高分子電激發光的定論。摘要(英) In this study, we successfully designed and synthesized a series of new maleimide-based copolymer with similar molecular weight (M-PT8ML8-F8, PT8ML1-F8, PT1ML8-F8, PT8ML8-F1 and PT8ML8-SP), their molecular weight is from 32700 to 52100. Even though no significant red-shifting spectra indicate the difference between those copolymers, however, through shortening the alkyl substituent chain length, enhancement of the glass-transition temperature (Tgs) is clearly achieved (91-148 oC). From the results of thermal analysis, the molecular weight do not affect both Tgs and decomposition temperatures of these maleimide copolymers (Tds). We have also fabricated polymer light-emitting diodes (PLEDs) of PT8ML8-F8 with different molecular weight. Comparing PT8ML8-F8 copolymers having different molecular weight, electroluminescence and power efficiency decrease with the increase of copolymer molecular weight. In addition, electroluminescence of PT8ML8-F8 showed red-shifting with the increase of the molecular weight. The PLED data implied that less aggregation of PT8ML8-F8 copolymer when its molecular weight is smaller. Thin film photoluminescence spectra and TEM images also support the PLED data. 關鍵字(中) ★ 高分子發光二極體
★ 分子量
★ 聚集關鍵字(英) ★ PLEDs
★ molecular weight
★ aggregation論文目次 Table of Contents…………………………………………I
List of Figures……………………………………………IV
List of Tables……………………………………………VIII
Appendix 1…………………………………………………IX
Appendix 2…………………………………………XI
Chinese Abstract…………………………………………XII
English Abstract…………………………………………XIII
CHAPTER ONE……………………………………………………1
INTRODUCTION…………………………………………………1
1.1 Historical Development………………………………1
1.2 Principle of Light-Emitting Polymers……………2
1.3 Aggregation Nature of the Light-Emitting Polymers…4
1.3.1 Influence of Molecular Architecture…………………5
1.3.2 Influence of Molecular Weight…………………14
1.4 Strategies to Suppress the Formation of Polymer Aggregation1…8
1.5 Keto Effect of Polyfluorene On PL and EL……………26
1.5.1 Nature of Keto Effect……………………………………26
1.5.2 Strategies to Depress Keto Defect……………………30
1.6 Research Motive…………………………………………………34
CHAPTER TWO…………………………………………………………………35
EXPERIMENT………………………………………………………35
2.1 Materials…………………………………………………35
2.2 Instruments………………………………………………35
2.2.1 Nuclear Magnetic Resonance Spectroscopy………35
2.2.2 Mass Spectrometer/Elemental Analyses…………35
2.2.3 Gel Permeation Chromatography……………35
2.2.4 UV-visible Spectrophotometer………………36
2.2.5 Photoluminescence Spectrophotometer…………36
2.2.6 Differential Scanning Calorimetry/Thermogravimetric Analysis…36
2.2.7 Miniature Fluorescence Lifetime Spectrometer (mini-τ)………………………….36
2.2.8 Cyclic Voltammetry………………………………………………………………..37
2.2.9 Atomic Force Microscopy/Transmission Electron Microscope…………………...37
2.2.10 AC2………………………………………………………………………………38
2.2.11 Fabrication and Characterization of PLED……………………………………..38
2.3 Synthesis and Characterization…………………………………………………………..48
2.3.1 Synthsis of maleimide-thiophene monomers……………………..…….…………39
2.3.1.a Synthesis of mleimide monomers…………………….……………………39
2.3.1.b Synthesis of thiophene monomers……………….………………………41
2.3.2 Synthesis of fluorene monomers……………………...……………………….46
2.3.3 Synthesis of spirobifluorene monomers………………...………………………48
2.3.4 Synthesis of maleimide copolymers………………………………………………50
CHAPTER THREE………………………………………………..………………………….53
RESULTS AND DISCUSSION………………………………………………………………53
3.1 Synthesis and Characterization of Maleimide Copolymers………………………………53
3.2 Characterization of Maleimide Copolymers……………………………………………...54
3.2.1 Absorption and Fluorescence Characterizations…………..………………………54
3.2.2 Redox properties…………………………………………………………………60
3.2.3 HOMO Energy Levels…………………………………………………………...65
3.2.4 Thermal Analysis………………………………..………………………………...67
3.2.4.a Differential Scanning Calorimetry…………………………………………67
3.2.4.b Thermal Gravimetric Analysis……………………………………………..70
3.2.5 Time-resolved Fluorescence Spectroscopy………………………………………..73
3.2.6 Morphology Study of AFM and TEM…………………………………………….76
3.3 Light Emitting Device Based on PT8ML8-F8 with Different Mw……………………..…80
CHAPTER FOUR…………………………………………………………………………….84
CONCLUSION……………………………………………………………………………….84
REFERENCE…………………………………………………………………………………85
APPENDIX 1: 1H, 13C NMR and MASS spectra………………………………………….…87
APPENDIX 2: Time-Resolved Fluorescence Spectroscopy………………………….103參考文獻 1. (a) A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys., 1953, 50, 64. (b) A. Bernanose, P. Vouaux, J. Chim. Phys., 1953, 50, 261. (c) A. Bernanose, J. Chim. Phys., 1955, 52, 396. (d) A. Bernanose, P. Vouaux, J. Chim. Phys., 1955, 52, 509.
2. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
3. J. H. Burroughes, D.D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackey, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990, 347, 539.
4. R. H. Lee, H. F. Hsu, L. H. Chan, C. T. Chen, Polymer, 2006, 47, 7001.
5. M. Surin, E. Hennebicq, C. Ego, D. Marsitzky, A. C. Grimsdale, K. Mullen, J. L. Bredas, R. Lazzaroni, P. Leclere, Chem. Mater., 2004, 16, 994.
6. S. H. Wu, J. H. Chen, C. H. Shen, C. C. Hsu, C. C. Tsiang., J Polym Sci: Part A: Polym Chem, 2004, 42, 6061.
7. V. Gebhardt, A. Bacher, M. Thelakkat, U. Stalmach, H. Meier, H. W. Schmidt, D. Haarer, Adv. Mater., 1999, 11, 119.
8. K. H. Weinfurtner, H. Fujikawa, S. Tokito, Y. Taga, Appl. Phys. Lett., 2000, 76, 2502.
9. K. Hosoi, T. Mori, T. Mizutani, T. Yamamoto, N. Kitamura, Thin Solid Films, 2003, 438-439, 201.
10. S. Xiao, M. Nguyen, X. Gong, Y. Cao, H. Wu, D. Moses, A. J. Heeger, Adv. Funct. Mater., 2003, 13, 25.
11. C. H. Chou, S. L. Hsu, K. Dinakaran, M. Y. Chiu, K. H. Wei, Macromolecules, 2005, 38, 745.
12. J. W. Y. Lam, Y. Dong, H. S. Kwok, B. Z. Tang, Macromolecules, 2006, 39, 6997.
13. H. C. Lin, H. H. Sung, C. M. Tsai, K. C. Li, Polymer, 2005, 46, 9810.
14. H. L. Chou, K. F. Lin, Y. L. Fan, D. C. Wang, J Polym Sci: Part B: Polym Phys, 2004, 43, 1705.
15. Y. H. Kim, J. W. Park, D. C. Shin, H. You, S. K. Kwon, J Polym Sci: Part A: Polym Chem, 2007, 45, 900.
16. M. Fukuda, K. Sawaka, K. Yoshino, Jpn. Appl. Phys., 1989, 28, 1443.
17. Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, Jpn. J. Appl. Phys., 1991, 30, 1941.
18. E. J. W. List, R. Guentner, P. S. de Freitas, U. Scherf, Adv. Mater., 2002, 14, 374.
19. R. Grisorio, G. P. Suranna, P. Mastrorilli, C. F. Nobile, Adv. Funct. Mater., 2007, 17, 538.
20. J. I. Lee, G. Klaerner, R. D. Miller, Chem. Mater., 1999, 11, 1083.
21. C. Xia, R. C. Advincula, Macromolecules, 2001, 34, 5854.
22. W. L. Yu, J. Pei, W. Huang, and A. J. Heeger, Adv. Mater., 2002, 12, 828.
23. L. L. Miller, G. D. Nordblom, E. A. Mayeda, J. Org. Chem., 1972, 37, 916.
24. O. Narwark, S.C.J. Meskers, S. Brocke, R. Peetz, E. ThornCsanyi, H. Bassler, Chem. Phys., 2003, 294, 1.
25. O. Narwark, A. Gerhard, S. C. J. Meskers, S. Brocke, E. ThornCsanyi, H. Bassler, Chem. Phys., 2003, 294, 17.指導教授 陳錦地、吳春桂
(Chin-Ti Chen、Chun-Guey Wu)審核日期 2007-7-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare