博碩士論文 92225014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.219.206.102
姓名 陳悅明(Yue-Ming Chen)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 使用 Support Vector Regression 建構複雜網路系統之反應曲面模型
(Modeling the Response Surface for Complex Queueing Networks using Support Vector Regression)
相關論文
★ 可資源共享之平行分散處理系統的最大吞吐量控制策略★ 設計複雜網路系統之高效率模擬方法
★ 反應曲面法在複雜網路上的應用★ 複雜網路系統模擬之均勻設計
★ 增加具動態伺服器配置的交換系統之吞吐量★ 流量模型基於分數綜合自還原移動平均過程
★ 最佳化交換處理系統之權重選擇★ 適用於網路交換處理系統下的角錐延展策略
★ 以抽樣及測量為基準之交換處理系統控制策略★ 樹狀網路之控制與統計反向問題
★ 貝他演算法的表現評估★ 廣泛區域之均勻設計與電腦實驗之運用
★ Evaluation of Algorithms for Generating Dirichlet Random Vectors★ 資料傳輸網路之貝氏診斷
★ 可共享資源的非循環網路系統建構在測量基礎上之控制策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前網路分析的重點在透過系統反應的表現值來研究系統的動態關係。一些重要的系統表現值包括:吞吐量(Throughput)、延遲時間(Delay)和存貨(Backlog)等等。由於現代網路系統的複雜度與日俱增,系統的表現值通常受到大量輸入參數的影響,所以理論分析的結果經常是不易取得的。在這種情況下,電腦模擬(Computer Simulation) 便成為分析複雜網路系統的重要工具。為了了解輸入參數和系統反應值之間的關係,文獻上傳統的作法是利用電腦模擬在整個輸入參數空間裡建構一個有母數模型 (Parametric Model)。這種作法的好處是我們可以清楚地知道輸入參數如何影響系統反應值的大小,但是這類作法在高維度的輸入空間也同時遭遇到模型選擇的問題。因此,當我們對複雜系統的反應所知不多時,使用無母數 (Nonparametric) 的方法似乎較為適當。
  此論文介紹一無母數方法來建構複雜網路系統的反應曲面模型。其目的是(i)希望用比較少的模擬次數得到不錯的反應曲面模型;(ii)希望所提出的方法可以較容易處理高維度參數空間的問題。本文也介紹一個被稱為廣泛交換系統(Generalized Switch Model)的網路模型,並以此模型示範我們所建議的方法。
摘要(英) The goal of network analysis has been focused on studying the dynamics of a system through
important performance measures such as throughput, delay, backlog and so on. Due to the
significant increase on the complexity of modern networks, the performance measures are
usually affected by a lot of input parameters, thus analytical solutions are often invalid.
Therefore, one often relies on simulation when analyzing complex network systems. Typically,
a parametric model is built over the entire input space so that the relationship between the
response measures of interest and the input parameters can be well described. However,
parametric methods suffer from the issues like model selection, computational validity, etc.
Therefore, non-parametric methods seem to be more plausible in analyzing complex network
systems when prior information is not valid. The goal of this study is to find an adequate
non-parametric method so that a good model for the response surface can be built using
a possibly smaller number of simulation runs and the model can also perform well in high-dimensional
input space. Among all non-parametric methods, support vector regression (SVR)
is considered in this study. This is mainly due to the following two reasons. First, it might
request fewer simulation runs than other approaches. Second, it can easily deal with high-dimensional
input spaces. A particular queueing system called the generalized switch model
is introduced and used to demonstrate the proposed approach.
關鍵字(中) 關鍵字(英) ★ Generalized Switch Model
★ treed model
★ Maximum Weighted Queue Length policy
★ Maximum Service Rate policy
★ Multivariate Adaptive Regression Splines
★ Cubic Smoothing Splines
★ Support Vector Regression
論文目次 1 Introduction 1
2 A Generalized Switch Model 4
3 Support Vector Regression 7
3.1 Risk Function 7
3.2 Example 8
3.3 Kernels 10
4 Apply SVR for Generalized Switch Models 12
4.1 Model Construction 12
4.1.1 The Average Sojourn Time Surfaces 14
4.2 Comparison with Other Approaches via Predictions 17
4.3 Ad Hoc Applications 19
4.3.1 Compare the Average-Sojourn-Time Surfaces for Two Di erent Sets of
Servers 19
4.3.2 Compare the Average-Sojourn-Time Surfaces for Two Di erent Control
Policies 21
5 Conclusion and Future Work 23
Bibliography 24
參考文獻 [1] Alexander, W. P. and S. D. Grimshaw. Treed regression. Journal of Computational and
Graphical Statistics 5 (1996), pages 156-175.
[2] Hung, Y. C. Modeling and analysis of stochastic networks with shared resources. Ph.D.
thesis, Department of Statistics, The University of Michiganm, Ann Arbor, Michigan.
2002.
[3] Hung, Y. C., Michailidis, G. and Bingham, D. R.. Developing E cient Simulation
Methodology for Complex Queueing Networks. Proceedings of the Winter Simulation Conference,
New Orlean. pages 152-159, 2003.
[4] Alex J. Smola and Bernhard Scholkopf. A Tutorial on Support Vector Regression. September
30, 2003.
[5] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines
and ither kernel-based learning methods. Cambridge University Press, 2000.
[6] Vladimir N. Vapnik. The nature of Statistical Learning Theory. New York: Springer,
1995.
[7] P. J. Green and B. W. Silverman. Nonparametric Regression and Generalized Linear
Models: A roughness penalty approach. Chapman & Hall. 1994.
[8] C. J. Stone, M. Hansen, C. Kooperberg and Y. K. Truong. Polynomial Splines and their
tensor products in extended linear modeling. Annals of Statistics, 25 (1997), pages 1371-
1470.
[9] Jerome H. Friedman. Multivariate Adaptive Regression Splines. Annals of Statistics, 19
(1991), pages 1-67.
[10] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S, 4th Edition. New
York:Springer, 2002.
[11] Kai-Tai Fang and Dennis K. J. Lin. Uniform Experimental Designs and their Applications
in Industry. Handbook in Statistics: Statistics in Industry, 2003.
[12] 張惠敏。設計複雜網路系統之高效率模擬方法。碩士論文,統計研究所,國立中央大學,中壢,台灣。2004。
[13] 邱啟宗。可資源共享之平行分散系統的最大吞吐量控制策略。碩士論文,統計研究所,國立中央大學,中壢,台灣。2004。
指導教授 洪英超(Ying-Chao Hung) 審核日期 2005-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明