參考文獻 |
Alvarez-de-la Rosa, D., Zhang, P., Shao, D., White, F. and Canessa, C.M., 2002. Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc. Natl. Acad. Sci. U. S. A. 99, pp. 2326–2331.
Alvarez-de-la Rosa, D., Krueger, S.R., Kolar, A., Shao, D., Fitzsimonds, R.M. and Canessa, C.M., 2003. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol. 546, pp. 77–87.
Akaike, N., Krishtal, O.A. and Maruyama, T., 1990. Proton-induced sodium current in frog isolated dorsal root ganglion cells. J. Neurophysiol. 63, pp. 805-813.
An, S., Tsai, C. and Goetzl, E.J., 1995. Cloning, sequencing and tissue distribution of two related G protein-coupled receptor candidates expressed prominently in human lung tissue. FEBS Lett. 375, pp. 121-124.
An, S., Bleu, T., Huang, W., Hallmark, O.G., Coughlin, S.R. and Goetzl, E.J., 1997. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 417, pp. 279– 282.
Ancellin, N. and Hla, T., 1999. Differential Pharmacological Properties and Signal Transduction of the Sphingosine 1-Phosphate Receptors EDG-1, EDG-3, and EDG-5. J. Biol. Chem. 274, pp. 18997– 19002.
Babinski, K., Catarsi, S., Biagini, G. and Seguela, P., 2000. Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+. J. Biol. Chem. 275, pp. 28519-28525.
Ben-Ari, Y., Aniksztejn, L. and Bregestovski, P., 1992. Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci. 15, pp. 333-339.
Bevan, S. and Yeast, J., 1991. Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurons. J. Physiol. 433, pp. 145-161.
Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D. and Julius, D., 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, pp. 816-824.
Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I. and Julius, D., 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, pp. 306-313.
Chen, C.C., England, S., Akopian, A.N. and WooD, J.N., 1998. A sensory neuron-specific, proton-gated ion channel. Proc. Natl. Acad. Sci. U. S. A. 95, pp. 10240-10245.
Chen, C.C., Zimmer, A., Sun, W.H., Hall, J., Brownstein, M.J. and Zimmer, A., 2002. A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. U. S. A. 99, pp. 8992-8997.
Choi, J.W., Lee, S.Y. and Choi, Y., 1996. Identification of a putative G rotein-coupled receptor induced during activation-induced apoptosis of T cells. Cell Immunol. 168, pp. 78-84.
Costigan, M. and Woolf, C.J., 2000. Pain: molecular mechanisms. J. Pain 1, pp. 35-44.
Croset, M., Brossard, N., Polette, A. and Lagarde, M., 2000. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J. 345, pp. 61-67.
Escoubas, P., Weille, J.R.D., Lecoq, A., Diochot, S., Waldmann, R., Champigny, G., Moinier, D., Me´nez, A. and Lazdunski, M., 2000. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 275, pp. 25116–25121.
Gonda, K., Okamoto, H., Takuwa, N., Yatomi, Y., Okazaki, H., Sakurai,T., Kimura, S., Sillard, R., Harii, K. and Takuwa, Y., 1999. The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and -insensitive G-proteins to multiple signalling pathways. Biochem. J. 337, pp. 67– 75.
Heringdorf, D.M.Z., Himmel, H.M. and Jakobs, K.H., 2002. Sphingosylphosphorylcholine—biological functions and mechanisms of action. Biochimica et Biophysica Acta 1582, pp. 178-189.
Huang, Y.Y., Wigström, H. and Gustafsson, B., 1987. Facilitated induction of hippocampal long-term potentiation in slices perfused with low concentrations of magnesium. Neuroscience 22, pp. 9–16.
Im, D., Heise, C.E., Nguyen, T., O’Dowd, B.F. and Lynch, K.R., 2001. Identification of a molecular target of psychosine and its role in globoid cell formation. J. Cell Biology 153, pp. 429-434.
Julius, D. and Basbaum, A.I., 2001. Molecular mechanisms of nociception. Nature 413, pp. 203-210.
Kabarowski, J.H.S., Zhu, K., Le, L.Q., Witte, O.N. and Xu, Y., 2001. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293, pp. 702-705.
Kandel, E.R., Schwartz, J.H. and Jessell, T.M., Principles of neural science. 4th edition. Chapter 24.
Konnerth, A., Lux, H.G. and Morad, M., 1987. Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J of Physiol. 386, pp. 606-33.
Koppert, W., Reeh, P.W. and Handwerker, H.O., 1993. Conditioning of histamine by bradykinin alters responses of rat nociceptor and human itch sensation. Neurosci Lett. 152, pp. 117-20.
Kyaw, H., Zeng, Z., Su, K., Fan, P., Shell, B.K., Carter, K.C. and Li, Y., 1998. DNA
Cell Biol. 17 (1998) 493.
Lai, C.C., Hong, K., Kinnell, M., Chalfie, M. and Driscoll, M., 1996. Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J. Cell Biol. 133, pp. 1071–1081.
Lang, E., Novak, A., Reeh, P.W. and Handwereker, H.O., 1990. Chemosensitivity of fine afferents from rat skin in vitro. J. Neurophysio. 63, pp. 887-901.
Liliom, K., Sun, G., BÜnemann, M., VirÁg, T., Nusser, N., Baker, D.L., Wang, D., Fabian, M.J., Brandts, B., Bender, K., Eickel, A., Malik, K.U., Miller, D.D., Desiderio, D.M., Tigyi, G. and Pott, L., 2001. Sphingosylphosphocholine is a naturally occurring lipid mediator in blood plasma: a possible role in regulating cardiac function via sphingolipid receptors. Bioche. J. 355, pp. 189-197.
Lin, P. and Ye, R.D. 2003. The lysophospholipid receptor G2A activates a specific combination of G proteins and promotes apoptosis. J. Biol. Chem. 278, pp. 14379-14386.
Ludwig, M., Vanek, M., Guerini, D., Gasser, J.A., Jones, C.E., Junker, U., Hofstetter, H., Wolf, R.M. and Seuwen, K., 2003. Proton-sensing G-protein-coupled receptors. Nature 425, pp. 93-98.
Mahadevan, M.S., Baird, S., Bailly, J.E., Shutler, G.G., Sabourin, L.A., Tsilfidis, C.T., Neville, C.E., Narang, M. and Korneluk, R.G., 1995. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3. Genomics 30, pp. 84-88.
Malone, M.H., Wang, Z. and Distelhorst, C.W., 2004. The Glucocorticoid-induced Gene tdag8 Encodes a Pro-apoptotic G Protein-coupled Receptor Whose Activation Promotes Glucocorticoid-induced Apoptosis. J. Biol. Chem. 279, pp. 52850-52859.
Murakami, N., Yokomizo, T., Okuno, T. and Shimizu, T., 2004. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J. Biol. Chem. 279, pp. 42484-42491.
Nofer, J.R., Fobker, M., Hobbel, G., Voss, R., Wolinska, I., Tepel, M., Zidek, W., Junker, R., Seedorf, U., von Eckardstein, A., Assmann, G. and Walter, M., 2000. Activation of phosphatidylinositol-specific phospholipase C by HDL-associated lysosphingolipid involvement in mitogenesis but not in cholesterol efflux. Bioche. 39, pp. 15199-207.
Nofer, J.R., Junker, R., Pulawski, E., Fobker, M., Levkau, B., von Eckardstein, A., Seedorf, U., Assmann, G. and Walter, M., 2001. High density lipoproteins induce cell cycle entry in vascular smooth muscle cells via mitogen activated protein kinase-dependent pathway. Thromb Haemost. 85, pp. 730-35.
Okamoto, H., Takuwa, N., Gonda, K., Okazaki, H., Chang, K., Yatomi, Y., Shigematsu, H. and Takuwa, Y., 1998. EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca21 mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J. Biol. Chem. 273, pp. 27104– 27110.
Okamoto, H., Takuwa, N., Yatomi, Y., Gonda, K., Shigematsu, H. and Takuwa, Y., 1999. EDG3 Is a Functional Receptor Specific for Sphingosine 1-Phosphate and Sphingosylphosphorylcholine with Signaling Characteristics Distinct from EDG1 and AGR16. Biochem. Biophys. Res. Commun. 260, pp. 203–208.
Price, M.P., Snyder, P.M. and Welsh, M.J., 1996. Cloning and expression of a novel human brain Na+ channel. J. Biol. Chem. 271, pp. 7879–7882.
Price, M.P., Lewin, G.R., McIlwrath, S.L., Cheng, C., Xie, J., Heppenstall, P.A., Stucky, C.L., Mannsfeldt, A.G., Brennan, T.J., Drummond, H.A., Qiao, J., Benson, C.J., Tarr, D.E., Hrstka, R.F., Yang, B., Williamson, R.A. and Welsh, M.J., 2000. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, pp. 1007–1011.
Price, M.P., McIlwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., Lewin, G.R. and Welsh, M.J., 2001. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, pp. 1071-1083.
Radu, C.G.., Yang, L.V., Riedinger, M., Au, M. and Witte, O.N., 2004. T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc. Natl. Acad. Sci. U. S. A. 101, pp. 245-250.
Radu, C.G.., Nijagal, A., McLaughlin, J., Wang, L. and Witte, O.N., 2005. Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc. Natl. Acad. Sci. U. S. A. 102, pp. 1632-1637.
Reeh, P.W. and Steen, K.H., 1996. Tissue acidosis in nociception and pain. Progress in Brain Research. 113, pp.143-51.
Renard, S., Lingueglia, E., Voilley, N., Lazdunski, M. and Barbry, P., 1994. Biochemical analysis of themembrane topology of the amiloride-sensitive Na+ channel. J. Biol. Chem. 269, pp. 12981–12986.
Rodriguez-Lafrasse, C. and Vanier, M.T., 1999. Sphingosylphosphorylcholine in Niemann-Pick disease brain: accumulation in type A but not in Type B. Neurochem. Res. 24, pp. 199–205.
Sa, G., Murugesan ,G., Jaye, M., Ivashchenko, Y. and Fox, P.L., 1995. Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via a p42 mitogen-activated protein kinase-dependent phosphorylation pathway in endothelial cells. J. Biol. Chem. 270, pp. 2360–2366.
Sugiyama, S., Kugiyama, K., Ohgushi, M., Fujimoto, K. and Yasue, H., 1994. Lysophosphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries. Role of protein kinase C. Circ.Res. 74, pp. 565-575.
Sekiguchi, K., Yokoyama, T., Kurabayashi, M., Okajima, F. and Nagai, R., 1999. Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes. Circ. Res. 85, pp. 1000–1008.
Steen, K.H., Reeh, P.W., Anton, F. and Handwereker, H.O., 1992. Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J. Neuronscience 12, pp. 86-93.
Steen, K.H. and Reeh, P.W., 1993. Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neuronsceince Letters 154, pp. 113-116.
Steen, K.H., Steen, A. and Reeh, P.W., 1995. A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro. J. neuroscience 15, pp. 3982-3968.
Steen, K.H., Steen, A., Kreysel, H. and Reeh, P.W., 1996. Inflammatory mediators potentiate pain induced by experimental tissue acidosis. Pain 66, pp. 163-170.
Strasberg, P.M. and Callahan, J.W., 1988. Lysosphingolipids and mitochondrial function. II. Deleterious effects of sphingosylphosphorylcholine. Biochem Cell Biol. 66, pp. 1322-32.
Tomura, H., Mogi, C., Sato, K. and Okajima, F., 2005. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cellular Signalling 17, pp. 1466-1476.
Tomura, H., Wang, J., Komachi, M., Damirin, A., Mogi, C., Tobo, M., Kon, J., Misawa, N., Sato, K. and Okajima, F., 2005. Prostaglandin I2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J. Biol. Chem. 280, pp. 34458-34464.
Tosa, N., Murakami, M., Jia, W.Y., Yokoyama, M., Masunaga, T., Iwabuchi, C., Inobe, M., Iwabuchi, K., Miyazaki, T., Onoe, K.M., Iwata, K. and Uede, T., 2003. Critical function of T cell death-associated gene 8 in glucocorticoid-induced thymocyte apoptosis. Int. Immunol. 15, pp. 741-749.
Van Brocklyn, J.R., Gra¨ler, M.H., Bernhardt, G., Hobson, J.P., Lipp, P. and Spiegel, S., 2000. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95, pp. 2624– 2629.
Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. and Lazdunski, M., 1997. A proton-gated cation channel involved in acid-sensing. Nature 386, pp. 173–177.
Waldmann, R., Bassilana, F., Weille, J., Champigny, G., Heurteaux, C. and Lazdunski, M., 1997. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem. 272, pp. 20975–20978.
Wang, J., Kon, J., Mogi, C., Tobo, M., Damirin, A., Sato, K., Komachi, K., Malchinkhuu, E., Murata, N., Kimura, T., Kuwabara, A., Wakamatsu, K., Koizumi, H., Uede, T., Tsujimoto, G., Kurose, H., Sato, T., Harada, A., Misawa, N., Tomura, H. and Okajima, F., 2004. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J. Biol. Chem. 279, pp. 45626-45633.
Wemmie, J.A., Chen, J., Askwith, C.C., Hruska-Hageman, A.M., Price, M.P., Nolan, B.C., Yoder, P.G., Lamani, E., Hoshi, T., Freeman, J. H. and Welsh, M.J., 2002. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34, pp. 463–477.
Weng, Z., Fluckiger, A., Nisitani, S., Wahl, W.I., Le, L.Q., Hunter, C.A., Fernal, A.A., Beau, M.M.L. and Witte O.N., 1998. A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proc. Natl. Acad. Sci. U.S.A. 95, pp. 12334-12339.
Xiao, Y.J., Schwartz, B., Washington, M., Kennedy, A., Webster, K., Belinson, J. and Xu, Y., 2001. Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal. Biochem. 290, pp. 302– 313.
Xu, Y., Fang, X.J., Casey, G. and Mills, G.B., 1995. Lysophospholipids activate ovarian and breast cancer cells. Biochem. J. 309, pp. 933–940.
Xu, Y., 2002. Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochimica et Biophysica Acta 1582, pp. 81-88.
Xu, Y. and Casey, G., 1996. Identification of human OGR1, a novel G protein-coupled receptor that maps to chromosome 14. Genomics 35, pp. 397-402.
Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L.M., Xiao, Y. and Damron, D.S., 2000. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nature Cell Biology 2, pp. 261-267.
Yamada, T., Okajima, F., Ohwada, S. and Kondo, Y., 1997. Growth inhibition of human pancreatic cancer cells by sphingosylphosphorylcholine and influence of culture conditions. Cell. Mol. Life Sci. 53, pp. 435– 441.
Yang, L.V., Radu, C.G., Wang, L., Riedinger, M. and Witte, O.N., 2005. Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood 105, pp. 1127-1134.
Zhu, K., Baudhuin, L.M., Hong, G., Williams, F.S., Cristina, K.L., Kabarowski, J.H.S., Witte, O.N. and Xu, Y., 2001. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J. Biol. Chem. 276, pp. 41325-41335. |