博碩士論文 92224020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:52.15.136.223
姓名 黃佳瑋(Chia-Wei Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 酸敏感的G蛋白偶合受體─OGR1表現在背根神經節內與痛覺相關的感覺神經元上
(The expression of proton-sensing G-protein-coupled receptor, OGR1, in pain-related neurons.)
相關論文
★ 週邊發炎反應增加酸敏感受體- TDAG8基因在背根神經節之表現量★ 酸敏感G蛋白偶合受體,G2A,在ASIC3基因剔除小鼠中改變表現量
★ MrgB4受體專一表現於感覺神經元,且在ASIC3基因剔除小鼠中有不同的表現。★ 血清素受體2B對酸敏感離子通道3與辣椒素受體1的影響
★ 酸敏感G蛋白偶合受體在小鼠背根神經節神經元中的訊息傳導路徑★ 酸敏感G蛋白偶合受體功能上的拮抗機制
★ TDAG8活化後經由PKA與PKCε增強辣椒素受體的敏感度★ 台灣海岸植物之內生真菌多樣性研究
★ ASIC3、TRPV1或TDAG8基因缺失會減緩關節炎誘導的熱痛覺過敏並抑制衛星膠細胞表現★ 抑制OGR1表現可減緩慢性神經性疼痛藉由減少顆粒性白血球數及非IB4神經元之鈣訊號
★ 抑制OGR1及G2A表現可藉由調控非IB4神經元鈣訊號減緩酸所誘導長期疼痛★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P
★ Peripheral ASIC3 activation involves in the late phase of CCI-induced mechanical allodynia by switching CGRP-positive population from small to large diameter neurons★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults
★ G-蛋白偶合接受體與G-蛋白訊號調控蛋白之整合型資料庫★ 血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當組織受傷以及發炎時,局部的氫離子濃度會上升(稱為組織酸化),並伴隨疼痛的感覺。組織酸化是造成疼痛的主要因素。VR1和ASICs家族中的ASIC3已被證實和酸引起的疼痛相關。但是剔除VR1基因或是ASIC3基因並不能抑制酸引起的疼痛。因此,酸敏感G蛋白偶合受體是否參與酸引起的痛覺是非常有趣的研究方向。酸敏感偶合受體包括OGR1、GPR4、G2A和TDAG8,他們原本被證明是溶血磷脂質(lysophospholipids)的受體。我使用反轉錄聚合酶連鎖反應(RT-PCR)以及定量聚合酶連鎖反應的檢測方法發現在小鼠中,OGR1、GPR4、G2A和TDAG8這四個基因都表現在背根神經節(dorsal root ganglion)。在這四個基因中,OGR1的基因表現量是最高的,這表示OGR1可能在感覺的反應中具有功能。我使用同位雜交法檢驗GR1基因分布在背根神經節的哪些神經元中。結果發現,在背根神經節中的小細胞有百分之三十五表現OGR1基因,而背根神經節中的大細胞有百分之二十一表現OGR1基因。因為小細胞和痛覺相關,所以OGR1的主要功能可能和痛覺相關。氫離子和sphingosylphosphatidylcholine (SPC,一種溶血磷脂質)都可以活化OGR1,使細胞內的鈣離子濃度增加,且氫離子和SPC是相互競爭的agonists。
摘要(英) Tissue injury and inflammation often raise local proton concentration (called tissue acidosis) and accompany with painful sensations. Tissue acidosis is a dominant factor that contributes to pain. Vanilloid receptor 1 (VR1) and acid-sensing ion channel 3 (ASIC3), one member of ASIC family, are proved to be related to acid-induced pain. However, acid-induced pain is not inhibited in ASIC3 or VR1 gene deletion. Therefore it would be interesting to know whether proton-sensing GPCRs are involved in acid-induced nociception. Proton-sensing GPCRs, including ovarian cancer G-protein-coupled receptor 1 (OGR1), GPR4, G2A, and T cell death associated gene 8 (TDAG8), are originally identified as lysophospholipid receptors. Using RT-PCR and quantitative PCR, I have found that mouse OGR1, GPR4, G2A, and TDAG8 are expressed in dordal root ganglion (DRG). Among the four genes, OGR1 has the highest expression levels in DRG, suggesting that OGR1 may have a role in sensory responses. The localization of OGR1 gene in DRG neurons was examined using in situ hybridization and the results show that 35% small-diameter and 21% large-diameter neurons have OGR1 expression. Since small-diameter neurons are related to nociception, the major function of mOGR1 is probably involved in nociception. Both of proton and sphingosylphosphatidylcholine (SPC) can activate OGR1 to increase intracellular calcium concentration, and they are competitive agonists for OGR1.
關鍵字(中) ★ G蛋白偶合受體
★ 背根神經節
★ 痛覺
★ 神經科學
關鍵字(英) ★ dorsal root ganglion
★ nociception
★ pain
★ neuroscience
★ G-protein-coupled receptors
★ OGR1
論文目次 Contents
Contents……………………………………………….........................I
Lists of figures …………….………………………………...…...…..V
Lists of tables………………………………………………………..VІ
Abbreviation………………………………………………………..VII
Chapter 1 Introduction…………………….……….…………...…...1
1.1 Pain and nociception……………………………………...…...2
1.1.1 Nociceptors……………………………..…………….........2
1.1.2 Locations of nociceptor terminals in spinal cord……..................4
1.1.3 Ascending pathways from spinal cord to brain……….............…5
1.2 Tissue acidosis and inflammatory pain …………….………….…..6
1.2.1 Tissue acidosis and pain…………...……..……………...….6
1.2.2 Inflammatory pain and tissue acidosis..……………...…….....7
1.3 Proton-sensing receptors…..……………………………...…...9
1.3.1 Acid-sensing ion channels (ASICs)……………….…….........9
1.3.2 Vanilloid receptor 1 (VR1)………………………................10
1.4 The ovarian cancer G-protein-coupled receptor 1 (OGR1) family.………………………………………………….……11
1.4.1 The physiological roles of sphingosylphophatidylcholine (SPC) and lysophosphatidylcholine (LPC)…………………………...11
1.4.2 The OGR1 family as lysophosphatidylcholine (LPC) receptors…………………………………..…………..13
1.4.3 The OGR1 family as proton receptors…………..……..…….15
1.5 The objective of the thesis………………………..………......16
Chapter 2 Materials and Methods……………………….………....17
2.1 Preparation of solutions………………………………………18
2.2 Preparation of agarose gels and gel electrophoresis………….18
2.3 Polymerase chain reaction (PCR)…………………………….19
2.3.1 General PCR……….………………………………….….19
2.3.2 Reverse transcription PCR (RT-PCR)……………..................19
2.3.3 Quantitative PCR (Q-PCR)………………...………............20
2.3.4 Design of primers…………………………...……….……20
2.3.5 Synthesis of first strand cDNA………………..……………22
2.4 Amplification and purification of plasmids…………………..22
2.4.1 Transformation…………………………………..….........22
2.4.2 Overnight culture and freezing stocks of bacteria...…………..23
2.4.3 Plasmid miniprep and midiprep……………………….........23
2.5 Cloning of mouse OGR1 and GPR4 genes……………….......24
2.5.1 Preparation of vectors………………………………...……..24
2.5.1.1 By specific restriction enzymes…………………..…..24
2.5.1.2 Preparation of T vectors...............................................25
2.5.2 Synthesis of inserts..............................................................25
2.5.3 Ligation.............................................................................26
2.5.4 PCR screening....................................................................26
2.5.5 Subcloning of mOGR1 and mGPR4 genes……..……..……..27
2.6 Tissues preparation...................................................................27
2.7 Extraction of RNA……………………………………………28
2.7.1 RNA extraction using TRIzol reagent……..…………...……..28
2.7.2 RNeasy kit………………………………...……………..28
2.7.3 Measurement of RNA quality and concentration……………...29
2.7.4 Treatment of genomic DNA contamination…………...……...30
2.7.5 Purification of nucleic acid using phenol/chloroform method…..30
2.8 In situ hybridization…………………………………………..31
2.8.1 Preparation of probes for in situ hybridization……………....…31
2.8.2 Slides coating………………………………………..….....32
2.8.3 Cryosectioning…………………………………..……...….33
2.8.4 Fixation and acetylation of the DRG tissue sections…………....33
2.8.5 Hybridization…………………………………....................33
2.9 Cell culture and transfection………………………………….36
2.9.1 Subculture……………………………………………..…36
2.9.2 Treatment of coverslips with poly-D-lysine…………..………37
2.9.3 Transfection……………………………………...…....….37
2.10 Quantitation of intracellular calcium concentration...............38
Chapter 3 Results…………………………..………………………..41
3.1 Four proton-sensing G-protein coupled receptors……………42
3.2 Cloning of mOGR1 and mGPR4 genes………………………43
3.3 Tissue distribution of the mOGR1 family…………………….44
3.4 Mouse OGR1 is the dominant proton-sensing G-protein- coupled-receptor in neuronal tissues……………………….45
3.5 Mouse OGR1 is expressed in both large- and small-diameter neurons in DRG……………………………………………..47
3.6 Proton is a ligand of OGR1…………………………………...48
3.7 Sphingosylphosphatidylcholine (SPC) is a ligand of OGR1....50
3.8 Effects of sphingosylphosphatidylcholine on proton-inducing signaling……………………………………………………..51
3.9 No significant change in proton-sensing GPCRs expression in carrageenan-induced inflammation…………………………….52
Chapter 4 Discussion……………………..……………....................53
4.1 Physiological roles of mOGR1……………………………….54
4.2 The effects of proton and SPC in mOGR1…………………...56
4.3 The inflammation experiments……………………………….59
References……………………………………………………………81
Appendix………………………………….………………………….88
Lists of figures
Figure 3-1 Alignment of amino acid sequences and the phylogenic tree for the mOGR1 family……………………………………61
Figure 3-2 Maps of mOGR1 and mGPR4 constructs.………………..63
Figure 3-3 Gene expression pattern of proton-sensing GPCRs………64
Figure 3-4 Gene expression levels of the mOGR1 family in wild type neuronal tissues……………………………….………...65
Figure 3-5 Comparison of gene expression levels of the mOGR1 family in wild type and ASIC3 knockout mice……………..………66
Figure 3-6 Mouse OGR1 is expressed in both N52-positive and peripherin-positive cells.……………….....…………....68
Figure 3-7 The pH-dependent responses in mOGR1-transfected HEK293T cells..............................................................69
Figure 3-8 Sphingosylphosphatidylcholine dosage responses in mOGR1-overexpressing HEK293T cells…...……..…70
Figure 3-9 Endogenous proton-sensing receptors and epithelial differentiation gene receptors in HEK293T cells….....71
Figure 3-10 Effect of sphingoshylphosphatidylcholine (SPC) in mOGR1-mediated proton signaling………..……….72
Figure 3-11 Effect of SPC in mOGR1-mediated proton signaling....…73
Figure 3-12 No significant change in gene expression of the mOGR1 family after injection of carrageenan.………….………..74
List of tables
Table 2-1 Oligonucleotide primers used in PCR experiments...……...75
Table 3-1 Gene expression levels of the mOGR1 family in different neuronal tissues………………………………………….....76
Table 3-2 Gene expression levels of the mOGR1 family after carrageenan injection…………………..……………..79
Table 3-3 The cell populations expressing mOGR1 in wild type DRG…………………………………………………….80
參考文獻 Alvarez-de-la Rosa, D., Zhang, P., Shao, D., White, F. and Canessa, C.M., 2002. Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc. Natl. Acad. Sci. U. S. A. 99, pp. 2326–2331.
Alvarez-de-la Rosa, D., Krueger, S.R., Kolar, A., Shao, D., Fitzsimonds, R.M. and Canessa, C.M., 2003. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol. 546, pp. 77–87.
Akaike, N., Krishtal, O.A. and Maruyama, T., 1990. Proton-induced sodium current in frog isolated dorsal root ganglion cells. J. Neurophysiol. 63, pp. 805-813.
An, S., Tsai, C. and Goetzl, E.J., 1995. Cloning, sequencing and tissue distribution of two related G protein-coupled receptor candidates expressed prominently in human lung tissue. FEBS Lett. 375, pp. 121-124.
An, S., Bleu, T., Huang, W., Hallmark, O.G., Coughlin, S.R. and Goetzl, E.J., 1997. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 417, pp. 279– 282.
Ancellin, N. and Hla, T., 1999. Differential Pharmacological Properties and Signal Transduction of the Sphingosine 1-Phosphate Receptors EDG-1, EDG-3, and EDG-5. J. Biol. Chem. 274, pp. 18997– 19002.
Babinski, K., Catarsi, S., Biagini, G. and Seguela, P., 2000. Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+. J. Biol. Chem. 275, pp. 28519-28525.
Ben-Ari, Y., Aniksztejn, L. and Bregestovski, P., 1992. Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci. 15, pp. 333-339.
Bevan, S. and Yeast, J., 1991. Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurons. J. Physiol. 433, pp. 145-161.
Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D. and Julius, D., 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, pp. 816-824.
Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I. and Julius, D., 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, pp. 306-313.
Chen, C.C., England, S., Akopian, A.N. and WooD, J.N., 1998. A sensory neuron-specific, proton-gated ion channel. Proc. Natl. Acad. Sci. U. S. A. 95, pp. 10240-10245.
Chen, C.C., Zimmer, A., Sun, W.H., Hall, J., Brownstein, M.J. and Zimmer, A., 2002. A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. U. S. A. 99, pp. 8992-8997.
Choi, J.W., Lee, S.Y. and Choi, Y., 1996. Identification of a putative G rotein-coupled receptor induced during activation-induced apoptosis of T cells. Cell Immunol. 168, pp. 78-84.
Costigan, M. and Woolf, C.J., 2000. Pain: molecular mechanisms. J. Pain 1, pp. 35-44.
Croset, M., Brossard, N., Polette, A. and Lagarde, M., 2000. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J. 345, pp. 61-67.
Escoubas, P., Weille, J.R.D., Lecoq, A., Diochot, S., Waldmann, R., Champigny, G., Moinier, D., Me´nez, A. and Lazdunski, M., 2000. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 275, pp. 25116–25121.
Gonda, K., Okamoto, H., Takuwa, N., Yatomi, Y., Okazaki, H., Sakurai,T., Kimura, S., Sillard, R., Harii, K. and Takuwa, Y., 1999. The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and -insensitive G-proteins to multiple signalling pathways. Biochem. J. 337, pp. 67– 75.
Heringdorf, D.M.Z., Himmel, H.M. and Jakobs, K.H., 2002. Sphingosylphosphorylcholine—biological functions and mechanisms of action. Biochimica et Biophysica Acta 1582, pp. 178-189.
Huang, Y.Y., Wigström, H. and Gustafsson, B., 1987. Facilitated induction of hippocampal long-term potentiation in slices perfused with low concentrations of magnesium. Neuroscience 22, pp. 9–16.
Im, D., Heise, C.E., Nguyen, T., O’Dowd, B.F. and Lynch, K.R., 2001. Identification of a molecular target of psychosine and its role in globoid cell formation. J. Cell Biology 153, pp. 429-434.
Julius, D. and Basbaum, A.I., 2001. Molecular mechanisms of nociception. Nature 413, pp. 203-210.
Kabarowski, J.H.S., Zhu, K., Le, L.Q., Witte, O.N. and Xu, Y., 2001. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293, pp. 702-705.
Kandel, E.R., Schwartz, J.H. and Jessell, T.M., Principles of neural science. 4th edition. Chapter 24.
Konnerth, A., Lux, H.G. and Morad, M., 1987. Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J of Physiol. 386, pp. 606-33.
Koppert, W., Reeh, P.W. and Handwerker, H.O., 1993. Conditioning of histamine by bradykinin alters responses of rat nociceptor and human itch sensation. Neurosci Lett. 152, pp. 117-20.
Kyaw, H., Zeng, Z., Su, K., Fan, P., Shell, B.K., Carter, K.C. and Li, Y., 1998. DNA
Cell Biol. 17 (1998) 493.
Lai, C.C., Hong, K., Kinnell, M., Chalfie, M. and Driscoll, M., 1996. Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J. Cell Biol. 133, pp. 1071–1081.
Lang, E., Novak, A., Reeh, P.W. and Handwereker, H.O., 1990. Chemosensitivity of fine afferents from rat skin in vitro. J. Neurophysio. 63, pp. 887-901.
Liliom, K., Sun, G., BÜnemann, M., VirÁg, T., Nusser, N., Baker, D.L., Wang, D., Fabian, M.J., Brandts, B., Bender, K., Eickel, A., Malik, K.U., Miller, D.D., Desiderio, D.M., Tigyi, G. and Pott, L., 2001. Sphingosylphosphocholine is a naturally occurring lipid mediator in blood plasma: a possible role in regulating cardiac function via sphingolipid receptors. Bioche. J. 355, pp. 189-197.
Lin, P. and Ye, R.D. 2003. The lysophospholipid receptor G2A activates a specific combination of G proteins and promotes apoptosis. J. Biol. Chem. 278, pp. 14379-14386.
Ludwig, M., Vanek, M., Guerini, D., Gasser, J.A., Jones, C.E., Junker, U., Hofstetter, H., Wolf, R.M. and Seuwen, K., 2003. Proton-sensing G-protein-coupled receptors. Nature 425, pp. 93-98.
Mahadevan, M.S., Baird, S., Bailly, J.E., Shutler, G.G., Sabourin, L.A., Tsilfidis, C.T., Neville, C.E., Narang, M. and Korneluk, R.G., 1995. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3. Genomics 30, pp. 84-88.
Malone, M.H., Wang, Z. and Distelhorst, C.W., 2004. The Glucocorticoid-induced Gene tdag8 Encodes a Pro-apoptotic G Protein-coupled Receptor Whose Activation Promotes Glucocorticoid-induced Apoptosis. J. Biol. Chem. 279, pp. 52850-52859.
Murakami, N., Yokomizo, T., Okuno, T. and Shimizu, T., 2004. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J. Biol. Chem. 279, pp. 42484-42491.
Nofer, J.R., Fobker, M., Hobbel, G., Voss, R., Wolinska, I., Tepel, M., Zidek, W., Junker, R., Seedorf, U., von Eckardstein, A., Assmann, G. and Walter, M., 2000. Activation of phosphatidylinositol-specific phospholipase C by HDL-associated lysosphingolipid involvement in mitogenesis but not in cholesterol efflux. Bioche. 39, pp. 15199-207.
Nofer, J.R., Junker, R., Pulawski, E., Fobker, M., Levkau, B., von Eckardstein, A., Seedorf, U., Assmann, G. and Walter, M., 2001. High density lipoproteins induce cell cycle entry in vascular smooth muscle cells via mitogen activated protein kinase-dependent pathway. Thromb Haemost. 85, pp. 730-35.
Okamoto, H., Takuwa, N., Gonda, K., Okazaki, H., Chang, K., Yatomi, Y., Shigematsu, H. and Takuwa, Y., 1998. EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca21 mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J. Biol. Chem. 273, pp. 27104– 27110.
Okamoto, H., Takuwa, N., Yatomi, Y., Gonda, K., Shigematsu, H. and Takuwa, Y., 1999. EDG3 Is a Functional Receptor Specific for Sphingosine 1-Phosphate and Sphingosylphosphorylcholine with Signaling Characteristics Distinct from EDG1 and AGR16. Biochem. Biophys. Res. Commun. 260, pp. 203–208.
Price, M.P., Snyder, P.M. and Welsh, M.J., 1996. Cloning and expression of a novel human brain Na+ channel. J. Biol. Chem. 271, pp. 7879–7882.
Price, M.P., Lewin, G.R., McIlwrath, S.L., Cheng, C., Xie, J., Heppenstall, P.A., Stucky, C.L., Mannsfeldt, A.G., Brennan, T.J., Drummond, H.A., Qiao, J., Benson, C.J., Tarr, D.E., Hrstka, R.F., Yang, B., Williamson, R.A. and Welsh, M.J., 2000. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, pp. 1007–1011.
Price, M.P., McIlwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., Lewin, G.R. and Welsh, M.J., 2001. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, pp. 1071-1083.
Radu, C.G.., Yang, L.V., Riedinger, M., Au, M. and Witte, O.N., 2004. T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc. Natl. Acad. Sci. U. S. A. 101, pp. 245-250.
Radu, C.G.., Nijagal, A., McLaughlin, J., Wang, L. and Witte, O.N., 2005. Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc. Natl. Acad. Sci. U. S. A. 102, pp. 1632-1637.
Reeh, P.W. and Steen, K.H., 1996. Tissue acidosis in nociception and pain. Progress in Brain Research. 113, pp.143-51.
Renard, S., Lingueglia, E., Voilley, N., Lazdunski, M. and Barbry, P., 1994. Biochemical analysis of themembrane topology of the amiloride-sensitive Na+ channel. J. Biol. Chem. 269, pp. 12981–12986.
Rodriguez-Lafrasse, C. and Vanier, M.T., 1999. Sphingosylphosphorylcholine in Niemann-Pick disease brain: accumulation in type A but not in Type B. Neurochem. Res. 24, pp. 199–205.
Sa, G., Murugesan ,G., Jaye, M., Ivashchenko, Y. and Fox, P.L., 1995. Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via a p42 mitogen-activated protein kinase-dependent phosphorylation pathway in endothelial cells. J. Biol. Chem. 270, pp. 2360–2366.
Sugiyama, S., Kugiyama, K., Ohgushi, M., Fujimoto, K. and Yasue, H., 1994. Lysophosphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries. Role of protein kinase C. Circ.Res. 74, pp. 565-575.
Sekiguchi, K., Yokoyama, T., Kurabayashi, M., Okajima, F. and Nagai, R., 1999. Sphingosylphosphorylcholine induces a hypertrophic growth response through the mitogen-activated protein kinase signaling cascade in rat neonatal cardiac myocytes. Circ. Res. 85, pp. 1000–1008.
Steen, K.H., Reeh, P.W., Anton, F. and Handwereker, H.O., 1992. Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J. Neuronscience 12, pp. 86-93.
Steen, K.H. and Reeh, P.W., 1993. Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neuronsceince Letters 154, pp. 113-116.
Steen, K.H., Steen, A. and Reeh, P.W., 1995. A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro. J. neuroscience 15, pp. 3982-3968.
Steen, K.H., Steen, A., Kreysel, H. and Reeh, P.W., 1996. Inflammatory mediators potentiate pain induced by experimental tissue acidosis. Pain 66, pp. 163-170.
Strasberg, P.M. and Callahan, J.W., 1988. Lysosphingolipids and mitochondrial function. II. Deleterious effects of sphingosylphosphorylcholine. Biochem Cell Biol. 66, pp. 1322-32.
Tomura, H., Mogi, C., Sato, K. and Okajima, F., 2005. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cellular Signalling 17, pp. 1466-1476.
Tomura, H., Wang, J., Komachi, M., Damirin, A., Mogi, C., Tobo, M., Kon, J., Misawa, N., Sato, K. and Okajima, F., 2005. Prostaglandin I2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J. Biol. Chem. 280, pp. 34458-34464.
Tosa, N., Murakami, M., Jia, W.Y., Yokoyama, M., Masunaga, T., Iwabuchi, C., Inobe, M., Iwabuchi, K., Miyazaki, T., Onoe, K.M., Iwata, K. and Uede, T., 2003. Critical function of T cell death-associated gene 8 in glucocorticoid-induced thymocyte apoptosis. Int. Immunol. 15, pp. 741-749.
Van Brocklyn, J.R., Gra¨ler, M.H., Bernhardt, G., Hobson, J.P., Lipp, P. and Spiegel, S., 2000. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95, pp. 2624– 2629.
Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. and Lazdunski, M., 1997. A proton-gated cation channel involved in acid-sensing. Nature 386, pp. 173–177.
Waldmann, R., Bassilana, F., Weille, J., Champigny, G., Heurteaux, C. and Lazdunski, M., 1997. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem. 272, pp. 20975–20978.
Wang, J., Kon, J., Mogi, C., Tobo, M., Damirin, A., Sato, K., Komachi, K., Malchinkhuu, E., Murata, N., Kimura, T., Kuwabara, A., Wakamatsu, K., Koizumi, H., Uede, T., Tsujimoto, G., Kurose, H., Sato, T., Harada, A., Misawa, N., Tomura, H. and Okajima, F., 2004. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J. Biol. Chem. 279, pp. 45626-45633.
Wemmie, J.A., Chen, J., Askwith, C.C., Hruska-Hageman, A.M., Price, M.P., Nolan, B.C., Yoder, P.G., Lamani, E., Hoshi, T., Freeman, J. H. and Welsh, M.J., 2002. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34, pp. 463–477.
Weng, Z., Fluckiger, A., Nisitani, S., Wahl, W.I., Le, L.Q., Hunter, C.A., Fernal, A.A., Beau, M.M.L. and Witte O.N., 1998. A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proc. Natl. Acad. Sci. U.S.A. 95, pp. 12334-12339.
Xiao, Y.J., Schwartz, B., Washington, M., Kennedy, A., Webster, K., Belinson, J. and Xu, Y., 2001. Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal. Biochem. 290, pp. 302– 313.
Xu, Y., Fang, X.J., Casey, G. and Mills, G.B., 1995. Lysophospholipids activate ovarian and breast cancer cells. Biochem. J. 309, pp. 933–940.
Xu, Y., 2002. Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochimica et Biophysica Acta 1582, pp. 81-88.
Xu, Y. and Casey, G., 1996. Identification of human OGR1, a novel G protein-coupled receptor that maps to chromosome 14. Genomics 35, pp. 397-402.
Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L.M., Xiao, Y. and Damron, D.S., 2000. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nature Cell Biology 2, pp. 261-267.
Yamada, T., Okajima, F., Ohwada, S. and Kondo, Y., 1997. Growth inhibition of human pancreatic cancer cells by sphingosylphosphorylcholine and influence of culture conditions. Cell. Mol. Life Sci. 53, pp. 435– 441.
Yang, L.V., Radu, C.G., Wang, L., Riedinger, M. and Witte, O.N., 2005. Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood 105, pp. 1127-1134.
Zhu, K., Baudhuin, L.M., Hong, G., Williams, F.S., Cristina, K.L., Kabarowski, J.H.S., Witte, O.N. and Xu, Y., 2001. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J. Biol. Chem. 276, pp. 41325-41335.
指導教授 孫維欣(Wei-Hsin Sun) 審核日期 2006-1-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明