國立中央大學103學年度碩士班考試入學試題卷

- 1. The normal melting point of tin at a pressure of 1 atm is 120° C. The change in volume during fusion is $41 \text{ cm}^{3}\text{kg}^{-1}$ and ΔH_{fus} is 420 cal mol⁻¹. Find the melting point of tin when the pressure is raised to 500 atm. (atm= 101325 pascals; cal=4.18 J; MW of Tin =119) (10 pt)
- 2. The Arrhenius equation is expressed by $k=Ae^{-Ea/RT}$ What is the physical meaning of E_a ? (5 pt)
- 3. For a system with the two competing elementary reactions $A \xrightarrow{k_1} B$ and $A \xrightarrow{k_2} C$, in which E_1 and E_2 are the reaction energies correspond to k_1 and k_2 , respectively. Calculate the observed activation energy E_a of the system in the relation of E_1 , k_1 , E_2 and k_2 . (10 pt)
- for the validity of the Langmuir equation. (5 pt)

 (b) A gas G_2 adsorbs onto a surface S as represented by $G_2(g) + 2S(surface) \leftrightarrow 2GS(surface)$ Assume that the adsorption process follows the Langmuir isotherm, i.e. $\theta = \frac{K^{1/2}[G]^{1/2}}{1+K^{1/2}[G]^{1/2}}$ where $\theta = \text{fractional coverage and } [G] = \text{partial pressure of } G_2$, and $K = k_a/k_d$.

 Derive the above expression of Langmuir isotherm for the adsorption process. (10 pt)

4. (a) Please write down the three necessary and sufficient conditions

注:背面有試題

國立中央大學103學年度碩士班考試入學試題卷

所別:<u>生物醫學工程研究所碩士班 生醫材料與技術組(一般生)</u> 科目:<u>物理化學</u> 共<u>之</u>頁 第<u>之</u>頁 本科考試可使用計算器,廠牌、功能不拘 *請在試卷答案卷(卡)內作答

- 5. Estimate (a) \triangle G, (b) the change of the chemical potential (\triangle u) of 100 g of water when the pressure is increased from 1.0 atm to 10 atm at 27 °C. (10 pt)
- 6. The rate constant for a reaction at 27°C is exactly triple the value at -23°C. Calculate the activation energy: (Gas constant R=8.314 J·K⁻¹· mol⁻¹) (10 pt)
- 7. For the reaction $A+B \rightarrow C$ consider the following mechanism:

$$A + B \xrightarrow{k_1} AB^*$$
 (1)

$$AB^* \xrightarrow{k_2} C \tag{2}$$

Derive the rate law using the steady state approximation to eliminate the concentration of AB*. (10 pt)

- 8. CCl_4 (carbon tetrachloride) melts at 260 K. The vapor pressure of CCl_4 is 10500 Pa at 290 K, 74500 Pa at 340 K, 270 Pa at 232 K and 1090 Pa at 250 K. Calculate:
 - (1) The enthalpy of vaporization (5 pt)
 - (2) The enthalpy of sublimation (5 pt)
 - (3) The normal boiling point (5 pt)
 - (4) The entropy of vaporization at the normal boiling point (5 pt)
- 9. Explain the following terms: (10 pt)
 - (a) Boltzmann thermal distribution
 - (b) Michaelis constant
 - (c) Zero-point energy
 - (d) Ideal solution

注:背面有試題