博碩士論文 92224026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:18.227.21.101
姓名 徐碧穗(Pi-Sui Hsu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 從阿拉伯芥(Arabidopsis thaliana)的基因功能活化品系(activation tagging line)中篩選並研究和重金屬有關的基因之功能,以及CCH在蕃茄和人類的類似基因(LeCCH、ATOX1)的功能研究
(Selection of activation-tagged mutants about heavy-metal in Arabidopsis thaliana, and functional study of LeCCH and ATOX1, the CCH homolog of tomato and human.)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究
★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位
★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究
★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究★ 蛋白質法尼脂化修飾參與植株耐熱反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年世界各國工業化程度提高,自然環境中的重金屬污染也日益嚴重,重金屬由植物吸收後對植物本身以及人類世界產生不良影響,如果可以找到植物中和重金屬影響相關的基因,並了解其作用的相關機制,對於減少環境中重金屬污染及重金屬對生物生長發育之影響將有很大助益。本研究是利用阿拉伯芥的基因功能活化品系來篩選並研究和重金屬鎘(第一章)、銅(第二章)有關的基因之功能,並利用酵母菌補償實驗(yeast complementation)和yeast two hybrid等方式研究CCH (阿拉伯芥中和植物體內銅運輸有關的基因)在蕃茄和人類的類似基因(LeCCH,第三章;ATOX1,第四章)的功能。
摘要(英) The level of industrialization of world is getting higher and higher recently, and the pollution of heavy metal in environment is getting worse. The absorption of heavy metal by plants could influence itself and human. If the gene related to heavy metal effects could be found to understand the mechanism, it is helpful for reducing the pollution of heavy metal in environment and the effects of heavy metal to the growth of living things. This research utilized the activation tagging lines of Arabidopsis thaliana to select and study the functions of gene related cadmium (chap 1) and copper (chap 2), and using methods of yeast complementation and yeast two hybrid to study the homolog of CCH (which is related to transport copper in plant) in tomato (LeCCH, chap 3) and human (ATOX1, chap 4).
關鍵字(中) ★ 阿拉伯芥
★ 重金屬
★ 鉻
★ 銅
關鍵字(英) ★ arabidopsis
★ activation tagging
★ cadmium
★ copper
★ BCS
★ ATX1
★ CCH
★ ATOX1
論文目次 目錄
第一章 1
研究對鎘有抗性的阿拉伯芥(Arabidopsis thaliana)基因
一、摘要 1
二、簡介 2
三、實驗與結果 6
四、討論 15
五、材料與方法 20
六、圖表 24
七、參考資料 36
第二章 39
從阿拉伯芥(Arabidopsis thaliana)的基因功能活化突變株(activation tagging line)中篩選可以更有效利用銅的品系
一、摘要 39
二、簡介 40
三、實驗與結果 42
四、討論 44
五、材料與方法 46
六、圖表 47
七、參考資料 51
第三章 53
LeCCH1的功能研究
一、摘要 53
二、簡介 54
三、實驗與結果 59
四、討論 62
五、材料與方法 64
六、圖表 69
七、參考資料 81
第四章 85
人類基因ATOX1的功能研究
一、摘要 85
二、簡介 86
三、實驗與結果 93
四、討論 97
五、材料與方法 100
六、圖表 104
七、參考資料 120
參考文獻 第一章
1. D. E. Salt, R. D. Smith, and I. Raskin, PHYTOREMEDIATION. Annu. Rev. Plant Physiol. Plant Mol. Biol.1998, 49:643–68
2. Richard B Meagher, Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology 2000, 3:153–162
3. Jonak C, Nakagami H, Hirt H., Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium.
Plant Physiol. 2004 Oct; 136(2):3276-83.
4. Detlef Weigel et al., a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Physiology 2000 April, Vol. 122, pp. 1003–1013
5. Clough SJ, Bent AF., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 1998, 16:735–743
6. Krysan PJ, Young JK, Sussman MR, T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 1999, 11: 2283–2290
7. Azpiroz-Leehan, R., and Feldmann, K.A. T-DNA insertionmutagenesis in Arabidopsis: Going back and forth. Trends Genet.1997, 13, 152–156.
8. Ochman H, Gerber AS, Hartl DL., Genetic applications of an inverse polymerase chain reaction. Genetics. 1988 Nov; 120(3):621-3.
9. Liu, Y.-G, N. Mitsukawa, T. Oosumi and R.F. Whittier. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995, 8, 457-463.
10. McCubbin AG, Ritchie SM, Swanson SJ, Gilroy S., The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function.
Plant J. 2004 Jul; 39(2):206-18.
11. Sanchez-Fernandez R, Davies TG, Coleman JO, Rea PA., The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem. 2001 Aug 10; 276(32):30231-44.
12. Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ., A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol. Chem. 1994 Sep 9;269(36):22853-7
13. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y, Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotech. 2003 Aug;21(8):914-9
14. Minet M, Dufour ME, Lacroute F, Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J 1992, 2: 417–422
15. Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW. Green-fluorescent protein as a new vital marker in plant cells. Plant J. 1995 Nov; 8(5):777-84.
16. Tong YP, Kneer R, Zhu YG., Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. TRENDS in Plant Science 2004 Jan; 9(1):7-9.
17. Cohen CK, Garvin DF, Kochian LV, Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta 2004, 218: 784–792
第二章
1. Liu, Y.-G, N. Mitsukawa, T. Oosumi and R.F. Whittier. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995, 8, 457-463.
2. Ochman H, Gerber AS, Hartl DL., Genetic applications of an inverse polymerase chain reaction. Genetics 1988 Nov;120(3):621-3
3. Detlef Weigel et al., a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Physiology 2000 April, Vol. 122, pp. 1003–1013
4. CRC, 1982. Handbook of organic analytical reagent. CRC Press, Ic, Florida pp. 331-334.
5. Lappin, A.G., Youngblood, M.P., Margerum, D.W., Electron transfer reactions of copper(I) and copper(III) complex. Inorg. Chem. 1980, 19, 407-413.
6. Li, Y., and M. A. Trush.. DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Carcinogenesis 1993, 14: 1303-1311
7. Shahabuddin, Rr. A., Hadi, S. M., Parish, J. H., and Ainley, K. Strand scission in DNA induced by quercetin and Cu(II): role of Cu(I) and oxygen free radicals. carcinogenesis 1989, 10, 1833-1839.
8. Ben-Zhan Zhu2 and Mordechai Chevion, Copper-Mediated Toxicity of 2,4,5-Trichlorophenol: Biphasic Effect of the Copper(I)-Specific Chelator Neocuproine, Archives of Biochemistry and Biophysics 2000 Vol. 380, No. 2, August 15, pp. 267–273
9. A. Iseki et al., Pyrrolidine dithiocarbamate inhibits TNF-α-dependent activation of NF-κB by increasing intracellular copper level in human aortic smooth muscle cell, Biochemical and Biophysical Research Communication 2000, 276, 88-92
10. Suh J, Zhu BZ, Frei B., Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide. Free Radic Biol Med. 2003 May 15; 34(10):1306-14.
11. Diehl, H., and Smith, G. F. (1958) The Copper Reagents: Cuproine, Neocuproine and Bathocuproine, G. F. Smith Co., Columbus
第三章
1. H. Wintz and C. Vulpe, Inteacellular trafficking-plant copper chaperones. Biochemical Society Transactions 2002 volume 30, part 4732-735
2. Valentine J, Gralla EB, Delivering copper inside yeast and human cells. Science 1997 278: 817–818
3. Edward Himelblau and Richard M, Delivering copper within plant cells, Amasino. Current Opinion in Plant Biology, Volume 3, Issue 3, 2000, pages 205-210
4. Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC, A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 1997, 272: 9215–9220
5. Yuan DS, Stearman R, Dancis A. Dunn T, Beeler T, Klausner RD, The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Nail Acad Sci USA 1995, 92:2632-2636.
6. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J, The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 1994, 76:403-410.
7. Stearman R, Yuan DS, Yamaguchi-lwal Y, Klausner RD, Dancis A, A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 1996, 271:1552-1557
8. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J, Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 1996, 15:6084-6095
9. Culotta, V. C, Klomp, L. W. j., Strain, j., Casareno, R. L. B,,Krems, B. and Gitlin JD. The copper chaperone for superoxide dismutase. J. Biol. Chem. 1997, 272, 23469-23472
10. Lin S, Culotta VC, The Atx1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci USA 1995 92:3784-3788
11. Glerum, D. M., Shtanko, A. and Tzagoloff, A., Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem 1996, 271,14504-14509
12. Edward Himelblau, Helena Mira , Su-Ju Lin, Valeria Cizewski Culotta, Lola Pen˜ arrubia, and Richard M. Amasino, Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol. 1998 Aug 117(4):1227-34
13. Pufahl R, Singer C, Peariso K, Lin S-J, Schmidt J, Fahrni C, Cizewski Culotta V, Penner-Hahn J, O’Halloran T, Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 1997 278: 853–856
14. Helena Mira, Fernando Mart?nez-Garc?a and Lola Pe?arrubia, Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J. 2001 Mar;25(5):521-8
15. Helena MIRA, Marcal VILAR, Enrique PE REZ-PAYA and Lola PEN ARRUBIA, Functional and conformational properties of the exclusive C-domain from the Arabidopsis copper chaperone (CCH). Biochem J. 2001 Jul 15; 357(Pt 2):545-9.
16. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR : RESPONSIVE TO ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 1999, 97:383-393
17. Woste KE, Kieber JJ: A strong loss-of-function mutation in RANI results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 2000, 12:443-455
18. Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE and Bleeker AB. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 1999, 283, 996-998
19. Petris MJ, Camakans J, Greenough M- LaFontaine S, Mercer JFB: A C-terminal di-leucine is required for localization of the Menkes protein in the trans-Golgi network. Hum. Mol. Genet 1998. 7:2063-2071
20. Lohman K, Gan S, John M, Amasino RM. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 1994, 92:322-328
21. Patricia Company, Carmen Gonzalez-Bosch, Identification of a copper chaperone from tomato fruits infected with Botrytis cinerea by differential display, Biochemical and Biophysical Research Communications 2003, 304 825–830
第四章
1. Under MC. Biochemistry of Copper. New York: Plenum Press, 1991
2. Shim H, Harris ZL. Genetic defects in copper metabolism. J Nutr 2003:133(5 suppi 1):1527S-31S
3. Pena MM, Lee J, Thiele DJ. A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 1999:129:1251 60
4. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV. Un-detcctable intracellular free copper : the requirement of a copper chaperone for superoxide dismutase. Science 1999,284:805-8
5. Predki PF, Sarkar B. Effect of replacement of "zinc finger" zinc on estrogen receptor DNA interactions. J Biol Chem 1992;267:5842-6
6. Halliwell B. Gutteridge JM. Oxygen toxicity, oxygen radicals, tran-sition metals and disease. Biochem J 1984;219:1-14
7. Jesse Bertinato, Mary R. L’Abbe. Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload., Journal of Natriyional Biochemistry 15, 2004, 316-322
8. Valentine J, Gralla EB, Delivering copper inside yeast and human cells. Science 1997 278: 817–818
9. Edward Himelblau and Richard M Amasino. Delivering copper within plant cells. Current Opinion in Plant Biology Volume 3, Issue 3, 2000, Pages 205-210
10. Kehoe CA, Faughnan MS. Gilmorc WS, Coulter JS. Howard AN. Strain JJ. Plasma diamine oxidase activity is greater in copper-ade- quate than copper-marginal or copper-deficient rats. J Nutr 2000; 130; 30-3.
11. Milne DB, Nielsen FH. F.ffects of a diet low in copper on copper-status indicators in postmenopausal women. Am J Clin Nutr 1996; 63:358-64.
12. Prohaska JR. Changes in Cu.Zn-superoxide dismutase. cylochromc c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. J Nutr 1991:121:355-63
13. Tumlund JR, Scott KC, Peiffer GL. Jang AM, Keyes WR, Keen CL, Sakanashi TM. Copper status of young men consuming a low-copper diet. Am J Clin Nutr 1997; 65: 72-8.
14. Pennington JA. Schoen SA, Salmon GD, Young B, Johnson RD, Marts RW. Composition of core foods of the U.S. food supply, 1982-1991. III. Copper, manganese, selenium, and iodine. J Food Comp Anal 1995:8:171 .217.
15. Tumlund JR, Keyes WR, Peiffer GL, Scott KC. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr 1998: 67:1219-25
16. Tumlund JR. Human whole-body copper metabolism. Am J Clin Nutr 1998:67 (5 suppl):960S-4S
17. Tao TY, Gitlin JD. Hepatic copper metabolism: insights from genetic disease. Hepatology 2003:37:1241-7
18. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic. Boron,Chromium. Copper, Iodine, Iron, Manganese, Molybdenum. Nickel. Silicon, Vanadium and Zinc. Washington, DC: National Academy Press, 2001 [chapter 7]
19. Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH: A sex-linked recessive disorder with retardation of growth, peculiar hair and focal cerebral and cerebellar degeneration. Pediatrics 1962, 29:764-779.
20. Gillespie JM: The isolation and properties of some soluble proteins from wool. Aust J Biol Sci 1964, 17:282
21. Danks DM, Campbell PE, Stevens BJ, Mayne V, Cartwnght E: Menkes's kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics 1972, 50:1 88-201
22. Mercer JF, Livingston J, Hall B, Paynter JA, Begy C, Cnandrasekharppa S, Lockhart P, Grimes A, Bhave M, Siemieniak D: Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet 1993, 3:20-25.
23. Chelly J, Turner Z, Tonnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, Horn N, Monaco AP: Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 1993, 3:14-19
24. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J: Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 1993, 3:7-13 [Published erratum appears in Nat Genet 1993, 3:273]
25. Yamaguchi Y, Heiny ME, Suzuki M, Gitlin JD: Biochemical characterization and intracellular localization of the Menkes disease protein. Proc NatI Acad Sci USA 1996, 93:14030-14035.
26. Yuan DS, Stearman R, Dancis A. Dunn T, Beeler T, Klausner RD; The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Nail Acad Sci USA 1995, 92:2632-2636.
27. Pufahl R, Singer C, Peariso K, Lin S-J, Schmidt J, Fahrni C, Cizewski Culotta V, Penner-Hahn J, O’Halloran T, Metal ion chaperone function of the soluble Cu (I) receptor Atx1. Science 1997 278: 853–856
28. Lin SJ, Culotta VC. The ATX1 gene of Saccharomyces cercvisiae encodes a small metal homeostasis factor that protects ceils against reactive oxygen toxicity. Proc NatI Acad Sci USA 1995:92:3784-8
29. Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC, Gitlin JD: Identification and functional expression of HAH1, a novel human gene involve in copper homeostasis. J Biol. Chem 1997, 272:9221-9226
30. Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC, A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 1997, 272: 9215–9220
31. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J: The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 1994, 76:403-410
32. Stearman R, Yuan DS, Yamaguchi-lwal Y, Klausner RD, Dancis A: A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 1996, 271:1 552-1 557.
33. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J: Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 1996, 15:6084-6095
34. Yamaguchi Y, Heiny ME, Gitlin JD. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun 1993,197:271-7.
35. Hung 1H, Suzuki M, Yamaguchi Y, Yuan DS, Klausncr RD, Gitlin JD. Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cereviviae. J Biol Chem 1997; 272:21461-6.
36. Petris MJ, Voskoboinik I, Cater M, Smith K, Kirn BE, Llanos RM, Strausak D, Camakaris J, Mercer JF. Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phos- phorylated catalytic intermediate. J Biol Chem 2002,277: 46736-42.
37. Schaefer M, Hopkins RG. Failla ML, Gilhn JD. Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver. Am .1 Physiol] 1999:276:G639 46.
38. Suzuki M. Gitlin JD. Intracellular localization of the Menkes and Wilson's disease proteins and then role in intracellular copper transport. Pediatr Int 1999:41 436 42
39. Paync AS. Kclly E.I, Gitlin JD. Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H 1069Q mutation. Proc Nati Acad Sci USA 1998:95:10854-9.
40. Lutsenko S, Efrcmov RG. Tsivkovskii R, Walker JM. Human copper-transporting ATPase ATP7B (the Wilson's disease protein), bio-chemical properties and regulation. J Bioencrg Biomembr 2002:34. 351-62.
41. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW, Thc Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 1993;5:327-37
42. Loudianos G, Gitlin JD. Wilson's disease. Semin Liver Dis 2000:20 353-64
43. Hamza I, Schaefer M, Klomp LW, Gitlin JD. Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. Proc Nail Acad Sci USA 1999;96:13363-8
44. Walker JM, Tsivkovskii R, Lutsenko S. Metallochapcrone Atoxl transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity, J Biol Chem 2002:277; 27953-9
45. Hamza I, Prohaska J, Gitlin JD. Essential role for Atoxl in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc NatI Acad Sci USA 2003;100:1215-20
46. Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD. The metallochaperone Atoxl plays a critical role in perinatal copper homeostasis. Proc NatI Acad Sci USA 2001:98:6848-52
47. NingWei and XingWang Deng, THE COP9 SIGNALOSOME. Annu. Rev. Cell Dev. Biol. 2003. 19:261–86
指導教授 吳少傑、葉國楨(Show-Jye Wu) 審核日期 2006-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明