參考文獻 |
第一章
1. D. E. Salt, R. D. Smith, and I. Raskin, PHYTOREMEDIATION. Annu. Rev. Plant Physiol. Plant Mol. Biol.1998, 49:643–68
2. Richard B Meagher, Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology 2000, 3:153–162
3. Jonak C, Nakagami H, Hirt H., Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium.
Plant Physiol. 2004 Oct; 136(2):3276-83.
4. Detlef Weigel et al., a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Physiology 2000 April, Vol. 122, pp. 1003–1013
5. Clough SJ, Bent AF., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 1998, 16:735–743
6. Krysan PJ, Young JK, Sussman MR, T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 1999, 11: 2283–2290
7. Azpiroz-Leehan, R., and Feldmann, K.A. T-DNA insertionmutagenesis in Arabidopsis: Going back and forth. Trends Genet.1997, 13, 152–156.
8. Ochman H, Gerber AS, Hartl DL., Genetic applications of an inverse polymerase chain reaction. Genetics. 1988 Nov; 120(3):621-3.
9. Liu, Y.-G, N. Mitsukawa, T. Oosumi and R.F. Whittier. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995, 8, 457-463.
10. McCubbin AG, Ritchie SM, Swanson SJ, Gilroy S., The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function.
Plant J. 2004 Jul; 39(2):206-18.
11. Sanchez-Fernandez R, Davies TG, Coleman JO, Rea PA., The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem. 2001 Aug 10; 276(32):30231-44.
12. Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ., A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol. Chem. 1994 Sep 9;269(36):22853-7
13. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y, Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotech. 2003 Aug;21(8):914-9
14. Minet M, Dufour ME, Lacroute F, Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J 1992, 2: 417–422
15. Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW. Green-fluorescent protein as a new vital marker in plant cells. Plant J. 1995 Nov; 8(5):777-84.
16. Tong YP, Kneer R, Zhu YG., Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. TRENDS in Plant Science 2004 Jan; 9(1):7-9.
17. Cohen CK, Garvin DF, Kochian LV, Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta 2004, 218: 784–792
第二章
1. Liu, Y.-G, N. Mitsukawa, T. Oosumi and R.F. Whittier. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995, 8, 457-463.
2. Ochman H, Gerber AS, Hartl DL., Genetic applications of an inverse polymerase chain reaction. Genetics 1988 Nov;120(3):621-3
3. Detlef Weigel et al., a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Physiology 2000 April, Vol. 122, pp. 1003–1013
4. CRC, 1982. Handbook of organic analytical reagent. CRC Press, Ic, Florida pp. 331-334.
5. Lappin, A.G., Youngblood, M.P., Margerum, D.W., Electron transfer reactions of copper(I) and copper(III) complex. Inorg. Chem. 1980, 19, 407-413.
6. Li, Y., and M. A. Trush.. DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Carcinogenesis 1993, 14: 1303-1311
7. Shahabuddin, Rr. A., Hadi, S. M., Parish, J. H., and Ainley, K. Strand scission in DNA induced by quercetin and Cu(II): role of Cu(I) and oxygen free radicals. carcinogenesis 1989, 10, 1833-1839.
8. Ben-Zhan Zhu2 and Mordechai Chevion, Copper-Mediated Toxicity of 2,4,5-Trichlorophenol: Biphasic Effect of the Copper(I)-Specific Chelator Neocuproine, Archives of Biochemistry and Biophysics 2000 Vol. 380, No. 2, August 15, pp. 267–273
9. A. Iseki et al., Pyrrolidine dithiocarbamate inhibits TNF-α-dependent activation of NF-κB by increasing intracellular copper level in human aortic smooth muscle cell, Biochemical and Biophysical Research Communication 2000, 276, 88-92
10. Suh J, Zhu BZ, Frei B., Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide. Free Radic Biol Med. 2003 May 15; 34(10):1306-14.
11. Diehl, H., and Smith, G. F. (1958) The Copper Reagents: Cuproine, Neocuproine and Bathocuproine, G. F. Smith Co., Columbus
第三章
1. H. Wintz and C. Vulpe, Inteacellular trafficking-plant copper chaperones. Biochemical Society Transactions 2002 volume 30, part 4732-735
2. Valentine J, Gralla EB, Delivering copper inside yeast and human cells. Science 1997 278: 817–818
3. Edward Himelblau and Richard M, Delivering copper within plant cells, Amasino. Current Opinion in Plant Biology, Volume 3, Issue 3, 2000, pages 205-210
4. Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC, A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 1997, 272: 9215–9220
5. Yuan DS, Stearman R, Dancis A. Dunn T, Beeler T, Klausner RD, The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Nail Acad Sci USA 1995, 92:2632-2636.
6. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J, The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 1994, 76:403-410.
7. Stearman R, Yuan DS, Yamaguchi-lwal Y, Klausner RD, Dancis A, A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 1996, 271:1552-1557
8. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J, Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 1996, 15:6084-6095
9. Culotta, V. C, Klomp, L. W. j., Strain, j., Casareno, R. L. B,,Krems, B. and Gitlin JD. The copper chaperone for superoxide dismutase. J. Biol. Chem. 1997, 272, 23469-23472
10. Lin S, Culotta VC, The Atx1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci USA 1995 92:3784-3788
11. Glerum, D. M., Shtanko, A. and Tzagoloff, A., Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem 1996, 271,14504-14509
12. Edward Himelblau, Helena Mira , Su-Ju Lin, Valeria Cizewski Culotta, Lola Pen˜ arrubia, and Richard M. Amasino, Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol. 1998 Aug 117(4):1227-34
13. Pufahl R, Singer C, Peariso K, Lin S-J, Schmidt J, Fahrni C, Cizewski Culotta V, Penner-Hahn J, O’Halloran T, Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 1997 278: 853–856
14. Helena Mira, Fernando Mart?nez-Garc?a and Lola Pe?arrubia, Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J. 2001 Mar;25(5):521-8
15. Helena MIRA, Marcal VILAR, Enrique PE REZ-PAYA and Lola PEN ARRUBIA, Functional and conformational properties of the exclusive C-domain from the Arabidopsis copper chaperone (CCH). Biochem J. 2001 Jul 15; 357(Pt 2):545-9.
16. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR : RESPONSIVE TO ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 1999, 97:383-393
17. Woste KE, Kieber JJ: A strong loss-of-function mutation in RANI results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 2000, 12:443-455
18. Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE and Bleeker AB. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 1999, 283, 996-998
19. Petris MJ, Camakans J, Greenough M- LaFontaine S, Mercer JFB: A C-terminal di-leucine is required for localization of the Menkes protein in the trans-Golgi network. Hum. Mol. Genet 1998. 7:2063-2071
20. Lohman K, Gan S, John M, Amasino RM. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 1994, 92:322-328
21. Patricia Company, Carmen Gonzalez-Bosch, Identification of a copper chaperone from tomato fruits infected with Botrytis cinerea by differential display, Biochemical and Biophysical Research Communications 2003, 304 825–830
第四章
1. Under MC. Biochemistry of Copper. New York: Plenum Press, 1991
2. Shim H, Harris ZL. Genetic defects in copper metabolism. J Nutr 2003:133(5 suppi 1):1527S-31S
3. Pena MM, Lee J, Thiele DJ. A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 1999:129:1251 60
4. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV. Un-detcctable intracellular free copper : the requirement of a copper chaperone for superoxide dismutase. Science 1999,284:805-8
5. Predki PF, Sarkar B. Effect of replacement of "zinc finger" zinc on estrogen receptor DNA interactions. J Biol Chem 1992;267:5842-6
6. Halliwell B. Gutteridge JM. Oxygen toxicity, oxygen radicals, tran-sition metals and disease. Biochem J 1984;219:1-14
7. Jesse Bertinato, Mary R. L’Abbe. Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload., Journal of Natriyional Biochemistry 15, 2004, 316-322
8. Valentine J, Gralla EB, Delivering copper inside yeast and human cells. Science 1997 278: 817–818
9. Edward Himelblau and Richard M Amasino. Delivering copper within plant cells. Current Opinion in Plant Biology Volume 3, Issue 3, 2000, Pages 205-210
10. Kehoe CA, Faughnan MS. Gilmorc WS, Coulter JS. Howard AN. Strain JJ. Plasma diamine oxidase activity is greater in copper-ade- quate than copper-marginal or copper-deficient rats. J Nutr 2000; 130; 30-3.
11. Milne DB, Nielsen FH. F.ffects of a diet low in copper on copper-status indicators in postmenopausal women. Am J Clin Nutr 1996; 63:358-64.
12. Prohaska JR. Changes in Cu.Zn-superoxide dismutase. cylochromc c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. J Nutr 1991:121:355-63
13. Tumlund JR, Scott KC, Peiffer GL. Jang AM, Keyes WR, Keen CL, Sakanashi TM. Copper status of young men consuming a low-copper diet. Am J Clin Nutr 1997; 65: 72-8.
14. Pennington JA. Schoen SA, Salmon GD, Young B, Johnson RD, Marts RW. Composition of core foods of the U.S. food supply, 1982-1991. III. Copper, manganese, selenium, and iodine. J Food Comp Anal 1995:8:171 .217.
15. Tumlund JR, Keyes WR, Peiffer GL, Scott KC. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr 1998: 67:1219-25
16. Tumlund JR. Human whole-body copper metabolism. Am J Clin Nutr 1998:67 (5 suppl):960S-4S
17. Tao TY, Gitlin JD. Hepatic copper metabolism: insights from genetic disease. Hepatology 2003:37:1241-7
18. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic. Boron,Chromium. Copper, Iodine, Iron, Manganese, Molybdenum. Nickel. Silicon, Vanadium and Zinc. Washington, DC: National Academy Press, 2001 [chapter 7]
19. Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH: A sex-linked recessive disorder with retardation of growth, peculiar hair and focal cerebral and cerebellar degeneration. Pediatrics 1962, 29:764-779.
20. Gillespie JM: The isolation and properties of some soluble proteins from wool. Aust J Biol Sci 1964, 17:282
21. Danks DM, Campbell PE, Stevens BJ, Mayne V, Cartwnght E: Menkes's kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics 1972, 50:1 88-201
22. Mercer JF, Livingston J, Hall B, Paynter JA, Begy C, Cnandrasekharppa S, Lockhart P, Grimes A, Bhave M, Siemieniak D: Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet 1993, 3:20-25.
23. Chelly J, Turner Z, Tonnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, Horn N, Monaco AP: Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 1993, 3:14-19
24. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J: Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 1993, 3:7-13 [Published erratum appears in Nat Genet 1993, 3:273]
25. Yamaguchi Y, Heiny ME, Suzuki M, Gitlin JD: Biochemical characterization and intracellular localization of the Menkes disease protein. Proc NatI Acad Sci USA 1996, 93:14030-14035.
26. Yuan DS, Stearman R, Dancis A. Dunn T, Beeler T, Klausner RD; The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Nail Acad Sci USA 1995, 92:2632-2636.
27. Pufahl R, Singer C, Peariso K, Lin S-J, Schmidt J, Fahrni C, Cizewski Culotta V, Penner-Hahn J, O’Halloran T, Metal ion chaperone function of the soluble Cu (I) receptor Atx1. Science 1997 278: 853–856
28. Lin SJ, Culotta VC. The ATX1 gene of Saccharomyces cercvisiae encodes a small metal homeostasis factor that protects ceils against reactive oxygen toxicity. Proc NatI Acad Sci USA 1995:92:3784-8
29. Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC, Gitlin JD: Identification and functional expression of HAH1, a novel human gene involve in copper homeostasis. J Biol. Chem 1997, 272:9221-9226
30. Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC, A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 1997, 272: 9215–9220
31. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J: The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 1994, 76:403-410
32. Stearman R, Yuan DS, Yamaguchi-lwal Y, Klausner RD, Dancis A: A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 1996, 271:1 552-1 557.
33. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J: Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 1996, 15:6084-6095
34. Yamaguchi Y, Heiny ME, Gitlin JD. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun 1993,197:271-7.
35. Hung 1H, Suzuki M, Yamaguchi Y, Yuan DS, Klausncr RD, Gitlin JD. Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cereviviae. J Biol Chem 1997; 272:21461-6.
36. Petris MJ, Voskoboinik I, Cater M, Smith K, Kirn BE, Llanos RM, Strausak D, Camakaris J, Mercer JF. Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phos- phorylated catalytic intermediate. J Biol Chem 2002,277: 46736-42.
37. Schaefer M, Hopkins RG. Failla ML, Gilhn JD. Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver. Am .1 Physiol] 1999:276:G639 46.
38. Suzuki M. Gitlin JD. Intracellular localization of the Menkes and Wilson's disease proteins and then role in intracellular copper transport. Pediatr Int 1999:41 436 42
39. Paync AS. Kclly E.I, Gitlin JD. Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H 1069Q mutation. Proc Nati Acad Sci USA 1998:95:10854-9.
40. Lutsenko S, Efrcmov RG. Tsivkovskii R, Walker JM. Human copper-transporting ATPase ATP7B (the Wilson's disease protein), bio-chemical properties and regulation. J Bioencrg Biomembr 2002:34. 351-62.
41. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW, Thc Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 1993;5:327-37
42. Loudianos G, Gitlin JD. Wilson's disease. Semin Liver Dis 2000:20 353-64
43. Hamza I, Schaefer M, Klomp LW, Gitlin JD. Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. Proc Nail Acad Sci USA 1999;96:13363-8
44. Walker JM, Tsivkovskii R, Lutsenko S. Metallochapcrone Atoxl transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity, J Biol Chem 2002:277; 27953-9
45. Hamza I, Prohaska J, Gitlin JD. Essential role for Atoxl in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc NatI Acad Sci USA 2003;100:1215-20
46. Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD. The metallochaperone Atoxl plays a critical role in perinatal copper homeostasis. Proc NatI Acad Sci USA 2001:98:6848-52
47. NingWei and XingWang Deng, THE COP9 SIGNALOSOME. Annu. Rev. Cell Dev. Biol. 2003. 19:261–86 |