參考文獻 |
1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982) [doi:10.1063/1.92959].
2. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Z. I. Alferov, et al., “Low threshold, large T o injection laser emission from (InGa) As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).
3. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kopev, et al., “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
4. B. F. Levine, “Quantum-Well Infrared Photodetectors,” J. Appl. Phys. 74, R1-R81 (1993).
5. L. Chu, A. Zrenner, G. Bohm and G. Abstreiter, “Normal-incidnet intersubband photocurrent spectroscopy on InAs/GaAs quantum dots,” Appl. Phys. Lett. 75, 3599-3601 (1999).
6. S. Krishna, “Quantum dots-in-a-well infrared photodetectors,” Infrared Phys. Technol. 47(1-2), 153–163 (2005) [doi:10.1016/j.infrared.2005.02.020].
7. U. Meirav and E. Foxman, “Single-electron phenomena in semiconductors,” Semicond. Sci. Technol. 11, 255-284 (1996) [doi:10.1088/0268-1242/11/3/003].
8. D. Loss and DP DiVincenzo, "Quantum computation with quantum dots," Phys. Rev. A 57, 120-126 (1998).
9. Prashant V. Kamat, "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters," J. Phys. Chem. C 112(48), 18737–18753 (2008) [doi: 10.1021/jp806791s]
10. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells.,” Chem. Rev. 110(11), 6873–6890 (2010) [doi:10.1021/cr900289f].
11. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic acute and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nature Photonics 2, 247-250 (2008) [doi:10.1038/nphoton.2008.34].
12. S. Coe, W. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002) [doi:10.1038/nature01299.1.].
13. M. Pelton, C. Santori, J. Vuc̆ković, B. Zhang, G. Solomon, J. Plant, and Y. Yamamoto, “Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002) [doi:10.1103/PhysRevLett.89.233602].
14. M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-Temperature Triggered Single Photon Emission from a III-Nitride Site-Controlled Nanowire Quantum Dot.,” Nano Lett. 14(2), 982–986 (2014) [doi:10.1021/nl404400d].
15. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403(6768), 405–407 (2000) [doi:10.1038/35000166].
16. S. Lee, J. kim, L. Jonsson, J. W. Wilkins, G. W. Bryant, and G. Kilmeck, “Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions,” Phys. Rev. B 63, 195318 (2001). [doi: 10.1103/PhysRevB.63.195318]
17. Ohno, Kaoru, Keivan Esfarjani, and Yoshiyuki Kawazoe. Ab Initio Methods, Springer Berlin Heidelberg (1999).
18. M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969 (1995). [doi: 10.1103/PhysRevB.52.11969]
19. Slater, John C. "A simplification of the Hartree-Fock method." Phy. Rev. 81(3), 385 (1951).
20. Robert Nyden Hill, “Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method,” J. Chem. Phys. 83, 1173 (1985) [doi:10.1063/1.449481].
21. D. E. Aspnes, P. Handler, and R. Island, “Interband Dielectric Properties of Solids in an Electric Field,” Phys. Rev. 166(3) (1968).
22. H. Sari, H. Metin, I. Sökmen, S. Elagöz, and Y. Ergün, “Stark localization and mixing phenomena between different Stark-ladders in coupled quantum wells,” Superlattices Microstruct. 17(4), 457 (1995).
23. L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403 (1984).
24. F. Fang and W. Howard, “Negative field-effect mobility on (100) Si surfaces,” Physical Review Letters 16(18), 797–799 (1966).
25. E. Schubert, Quantum Mechanics Applied to Semiconductor Devices, pp.82, in ecse.rpiscrews.us, Rensselaer Polytechnic Institute (2004).
26. Holger T Grahn, Numerical data and functional relationships, World Scientific, Singapore, (1999).
27. C.T. Cheng, C.Y. Chen, C.W. Lai, W.H. Liu, S.C. Pu, P.T. Chou, Y.H. Chou, and H.T. Chiu, “Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots,” J. Mater. Chem. 15(33), 3409 (2005) [doi:10.1039/b503681j].
28. H. Rodríguez, C. T. Giner, S. E. Ulloa, and J. M. Antuña, “Electronic states in a quantum lens,” Phys. Rev. B 63, 125319 (2001) [DOI:10.1103/PhysRevB.63.125319]
29. M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure ,” Phys. Rev. B 52, 11969 (1995). [DOI: 10.1103/PhysRevB.52.11969]
30. S. Raymond, J. P. Reynolds, and J. L. Merz, “Asymmetric Stark shift in AlxIn1-xAs/AlyGa1-yAs self-assembled dots,” Phys. Rev. B 58(20), 415–418 (1998).
31. T. M. Hsu, W.-H. Chang, C. C. Huang, N. T. Yeh, and J.-I. Chyi, “Quantum-confined Stark shift in electroreflectance of InAs/InxGa1−xAs self-assembled quantum dots,” Appl. Phys. Lett. 78(12), 1760 (2001) [doi:10.1063/1.1355989].
32. J. Barker and E. O’Reilly, “Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots,” Phys. Rev. B 61(20), 13840–13851 (2000).
33. Holger T. Grahn, Introduction to Semiconductor Physics, Chapter 11, Singapore (1999).
34. E. F. Schubert, Physical Foundations of Solid-State Devices, Chapter 10, Troy, New York (2006).
35. D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33(10), 6976–6982 (1986).
36. D. M. Whittaker, M. S. Skolnick, G. W. Smith, and C. R. Whitehouse, “Wannier-Stark localization of Χ and Γ states in GaAs-A1As short-period superlattices,” Phys. Rev. B 42(6), 3591–3598 (1990).
37. H. Sari, H. Metin, I. Sökmen, S. Elagöz, and Y. Ergün, “Stark localization and mixing phenomena between different Stark-ladders in coupled quantum wells,” Superlattices Microstruct. 17(4), 457 (1995).
38. T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, “Microwave spectroscopy of a quantum-dot molecule,” Nature 395, 873–876 (1998).
39. M. K. Chin, “Modeling of InGaAs/InAlAs coupled double quantum wells,” J. Appl. Phys. 76(1), 518 (1994) [doi:10.1063/1.357104].
40. T. Hayashi, T. Fujisawa, H. Cheong, Y. Jeong, and Y. Hirayama, “Coherent Manipulation of Electronic States in a Double Quantum Dot,” Phys. Rev. Lett. 91(22), 226804 (2003) [doi:10.1103/PhysRevLett.91.226804].
41. Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer and Gregory D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463, 644-647 (2010) [doi:10.1038 /nature08811].
42. Kasprzak J, Patton B, Savona V and Langbein W, “Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging,” Nature Photonics 5, 57-63 (2011)[ doi:10.1038/nphoton.2010.284].
43. C R Hall, J O Tollerud, H M Quiney and J A Davis, “C R Hall1, J O Tollerud1, H M Quiney2 and J A Davis,” New Journal of Physics 15, 045028 (2013).
44. E. F. Schubert, Physical Foundations of Solid-State Devices, Chapter 8, Troy, New York (2006).
45. Hari Signh Nalwa, Handbook of Thin Film Materials: Nanomaterials and magnetic thin films, p 221, Stanford Scientific Corporation, USA (2002).
46. B. O. Seraphin and R. B. Hess, “Franz-Keldysh Effect above the Fundamental Edge in Germanium ,“ Phys. Rev. Letter 14, 138 (1965)
47. B. O. Seraphin and N. Bottka, “Band-Structure Analysis from Electro-Reflectance Studies,” Phys. Rev.145,628, (1966)
48. K. Fujiwara, H. Schneider, R, Cingolani and K. Ploog, “Successive Wannier-Stark localization and excitonic enhancement of intersubband absorption in a short-period GaAs/AlAs superlattice,” Solid State Comm. 72, 9 (1989).
49. Paul Harrison, QUANTUM WELLS, WIRES AND DOTS-Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd Ed. pp. 212, Wiley-Interscience, UK.
50. Imada, S. Ozaki, and S. Adachi, “Photoreflectance spectroscopy of wurtzite CdS,” J. Appl. Phys. 92(4), 1793 (2002) [doi:10.1063/1.1493655].
51. U. Woggon, K. Hild, F. Gindele, and W. Langbein, “Huge binding energy of localized biexcitons in CdS Õ ZnS quantum structures,” Phys. Rev. B 61(19), 632–635 (2000).
52. R. W. Meulenberg, J. R. I. Lee, A. Wolcott, J. Z. Zhang, L. J. Terminello, and T. van Buuren, “Determination of the exciton binding energy in CdSe quantum dots.,” ACS Nano 3(2), 325–330 (2009) [doi:10.1021/nn8006916].
53. Franceschetti and A. Zunger, “Direct Pseudopotential Calculation of Exciton Coulomb and Exchange Energies in Semiconductor Quantum Dots,” Phys. Rev. Lett. 78(5), 915–918 (1997) [doi:10.1103/PhysRevLett.78.915].
54. H. Schmidt and H. Weller, “Quantum size effects in semiconductor crystallites: calculation of the energy spectrum for the confined exciton,” Chem. Phys. Lett. 129(6), 0–3 (1986).
55. Y. Kayanuma, “Wannier exciton in microcrystals,” Solid State Commun. 59(6), 405–408 (1986).
56. S. V. Gaponenko, Optical properties of semiconductor nanocrystals, Chapter 2, Cambridge University, UK, 1998.
57. S. Monticone, R. Tufeu, A. Kanaev, E. Scolan, and C. Sanchez, “Quantum size effect in TiO2 nanoparticles: does it exist?,” Applied Surface Science 162, 565-570 (2000).
58. L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403 (1984) [doi:10.1063/1.447218].
59. Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem. 95(2), 525–532 (1991).
60. T. Christian and E. Ghadiri, “QDs application in solar cells” (2009).
61. S.V. Gaponenko, "Optical properties of semiconductor nanocrystals" Cambridge University Press, 2005.
62. P. Paufler, Landolt-Börnstein. Numerical data and functional relationships in science and technology. New Series. Group III: Crystal and Solid State Physics. Vol. 22: Semiconductors, pp.168, Ed. by O, Madelung [DOI: 10.1002/crat.2170231029].
63. Holger T Grahn, Numerical data and functional relationships, pp. 119, World Scientific, Singapore, (1999).
64. http://www.semiconductors.co.uk/propiivi5410.htm
65. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaAs/basic.html
66. B. Brar, G. D. Wilk and A. C. Seabaugh, “Direct extraction of the electron tunneling effective mass in ultrathin SiO2,” Appl. Phys. Lett. 69, 2728 (1996), [doi: 10.1063/1.117692].
67. S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, Inc, New York, (1981).
68. S. Roberts, “Dielectric Constants and Polarizabilities of Ions in Simple Crystals and Barium Titanate,” Phys. Rev. 76, 1215 (1949).
69. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys. 75, 2042-2047 (1994).
70. B. Mereu, G. Sarau, E. Pentia, V. Draghici, M. Lisca, T. Botila and L. Pintilie, "Field-effect transistor based on nanometric thin CdS films," Materials Science and Engineering: B 109(1-3), 260-263 (2004).
71. M. Powalla and B. Dimmler, “Development of large area CIGS modules,” Solar Energy Materials & Solar Cells 75(27) (2003).
72. H. El Maliki, J. C. Bernède, S. Marsillac, J. Pinel, X. Castel and J. Pouzet, "Study of the influence of annealing on the properties of CBD-CdS thin films," Applied Surface Science 205(1-4), 65-79 (2003) [doi:10.1016/S0169-4332(02)01082-6].
73. H. Moualkia, S. Hariech, and M. S. Aida, “Structural and optical properties of CdS thin films grown by chemical bath deposition,” Thin Solid Films 518(4), 1259–1262, Elsevier B.V. (2009) [doi:10.1016/j.tsf.2009.04.067].
74. C. Guillén, M. Martınez, and J. Herrero, “Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters,” Thin Solid Films 335(1-2), 37–42 (1998).
75. Daniel Lincot and Raúl Ortega Borges, “Chemical Bath Deposition of Cadmium Sulfide Thin Films. In Situ Growth and Structural Studies by Combined Quartz Crystal Microbalance and Electrochemical Impedance Techniques,” J. Electrochem. Soc. 139 (7), 1880-1889 (1992) [doi: 10.1149/1.2069515 ].
76. N.-H. Kim, S.-H. Ryu, H.-S. Noh, and W.-S. Lee, “Electrical and optical properties of sputter-deposited cadmium sulfide thin films optimized by annealing temperature,” Mater. Sci. Semicond. Process. 15(2), 125–130, Elsevier (2012) [doi:10.1016/j.mssp.2011.09.001].
77. Oliva and O. Solıs-Canto, “Formation of the band gap energy on CdS thin films growth by two different techniques,” Thin Solid Films 391, 28–35 (2001).
78. L. Ward, Handbook of Optical Constants of Solids II, edited by E. D. Palik, p. 579, Academic, Boston, USA, 1991.
79. Imada, S. Ozaki, and S. Adachi, “Photoreflectance spectroscopy of wurtzite CdS,” J. Appl. Phys. 92(4), 1793 (2002) [doi:10.1063/1.1493655].
80. U. Woggon, K. Hild, F. Gindele, and W. Langbein, “Huge binding energy of localized biexcitons in CdS Õ ZnS quantum structures,” Phys. Rev. B 61(19), 632–635 (2000).
81. N.-H. Kim, S.-H. Ryu, H.-S. Noh, and W.-S. Lee, “Electrical and optical properties of sputter-deposited cadmium sulfide thin films optimized by annealing temperature,” Mater. Sci. Semicond. Process. 15(2), 125–130, Elsevier (2012) [doi:10.1016/j.mssp.2011.09.001].
82. E. Rabani, B. Hetenyi, B. J. Berne, and L. E. Brus, “Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium,” The Journal of Chemical Physics 110, 5355 (1999) [doi: 10.1063/1.478431].
83. The General Properties of Si, Ge, SiGe, SiO2 and Si3N4
84. N.-H. Kim, S.-H. Ryu, H.-S. Noh, and W.-S. Lee, “Electrical and optical properties of sputter-deposited cadmium sulfide thin films optimized by annealing temperature,” Mater. Sci. Semicond. Process. 15(2), 125–130, Elsevier (2012) [doi:10.1016/j.mssp.2011.09.001].
85. C. Liu, Y. Kwon, and J. Heo, “Laser-induced blue-shift of the photoluminescence from PbS quantum dots in glasses,” Chem. Phys. Lett. 452, 281–284 (2008).
86. C. Cheng and H. Yan, “Bandgap of the core–shell CdSe/ZnS nanocrystal within the temperature range 300–373K,” Phys. E 41(5), 828–832 (2009).
87. F. Jarjour, R. a. Oliver, A. Tahraoui, M. J. Kappers, R. a. Taylor, and C. J. Humphreys, “Experimental and theoretical study of the quantum-confined Stark effect in a single InGaN/GaN quantum dot under applied vertical electric field,” Superlattices Microstruct. 43(5-6), 431–435 (2008) [doi:10.1016/j.spmi.2007.06.021].
88. T. M. Hsu, W.-H. Chang, C. C. Huang, N. T. Yeh, and J. I. Chyi, “Quantum-confined Stark shift in electroreflectance of InAs/InxGa1−xAs self-assembled quantum dots,” Appl. Phys. Lett. 78(12), 1760 (2001) [doi:10.1063/1.1355989].
89. S. Raymond, J. P. Reynolds, and J. L. Merz, “Asymmetric Stark shift in AlxIn1-xAs/AlyGa1-yAs self-assembled dots,” Phys. Rev. B 58(20), 415–418 (1998).
90. T. Chen, Y. Wang, P. Xiang, R. Luo, M. Liu, W. Yang, Y. Ren, Z. He, Y. Yang, et al., “Crack-free InGaN multiple quantum wells light-emitting diodes structures transferred from Si (111) substrate onto electroplating copper submount with embedded electrodes,” Appl. Phys. Lett. 100(24), 241112 (2012) [doi:10.1063/1.4729414].
91. H. Zhao, G. Liu, J. Zhang, and J. Poplawsky, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4), A991–A1007 (2011).
92. D. E. Aspnes, P. Handler, and R. Island, “Interband Dielectric Properties of Solids in an Electric Field,” Phys. Rev. 166(3) (1968).
93. D. Miller, D. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B 33(10), 6976–6982 (1986).
94. B. O. Dabbousi, F. V Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “( CdSe ) ZnS Core - Shell Quantum Dots : Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B 9463(97), 9463–9475 (1997).
95. O. Orlova, Y. A Gromova, V. G. Maslov, O. V Andreeva, A V Baranov, A V Fedorov, a V Prudnikau, M. V Artemyev, and K. Berwick, “Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor.,” Nanotechnology 24(33), 335701 (2013) [doi:10.1088/0957-4484/24/33/335701].
96. R. W. Meulenberg, J. R. I. Lee, A. Wolcott, J. Z. Zhang, L. J. Terminello, and T. van Buuren, “Determination of the exciton binding energy in CdSe quantum dots.,” ACS Nano 3(2), 325–330 (2009) [doi:10.1021/nn8006916].
97. K. Liu, T. a. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: Among themselves and with matrices,” Microelectronics J. 38(6-7), 700–705 (2007) [doi:10.1016/j.mejo.2007.05.007].
98. S. A. Empedocles; and M. G. Bawendi, “Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots,” Science 278(19), 2114–2117 (1997) [doi:10.1126/science.278.5346.2114].
99. Franceschetti and A. Zunger, “Direct Pseudopotential Calculation of Exciton Coulomb and Exchange Energies in Semiconductor Quantum Dots,” Phys. Rev. Lett. 78(5), 915–918 (1997) [doi:10.1103/PhysRevLett.78.915].
100. A. F. Jarjour, R. a. Oliver, A. Tahraoui, M. J. Kappers, R. a. Taylor, and C. J. Humphreys, “Experimental and theoretical study of the quantum-confined Stark effect in a single InGaN/GaN quantum dot under applied vertical electric field,” Superlattices Microstruct. 43(5-6), 431–435 (2008) [doi:10.1016/j.spmi.2007.06.021].
101. E. F. Schubert, Physical Foundations of Solid-State Devices, Chapter 10, Troy, New York (2006).
102. Holger T Grahn, Numerical data and functional relationships, pp. 149, World Scientific, Singapore, (1999).
103. H. Sari, H. Metin, I. Sökmen, S. Elagöz, and Y. Ergün, “Stark localization and mixing phenomena between different Stark-ladders in coupled quantum wells,” Superlattices Microstruct. 17(4), 457 (1995).
104. J. L. Bradshaw, R. P. Devaty, W. J. Choyke, and R. L. Messham, “Fabry-Perot cavity oscillations of an AlxGa1-xAs photoluminescence spectrum,” Appl. Opt. 29(16), 2367–2369 (1990).
105. T. Lee, W. Kang, Y. Park, and E. Kim, “Fabry-perot interference characteristics of the photoluminescence in nanoclustered SiNx: H thick films,” J. Korean Phys. … 50(3), 581–585 (2007).
106. H. A. Macleod, Thin-Film Optical Filters, p. 800, CRC Press; 4th edtion (2010).
107. Macleod, “Gain in Optical Coatings: Part 1 ”, Bulletin, Society of Vacuum Coaters, Issue Fall, (2011)
108. Stenzel, Olaf, “Derivations from the Oscillator Model,” in The Physics of Thin Film Optical Spectra, pp. 42-44,.1996. |