博碩士論文 101322082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.145.164.47
姓名 張?(Che Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 近似零相關域與門檻值應用於GNSS相位模稜搜尋
(Efficient GNSS Carrier Phase Ambiguity Resolution Using Approximation Zero-correlation Transformation and Threshold)
相關論文
★ 利用數個參考站模式化電離層影響量以進行GPS衛星測量★ 白化濾波應用於GPS動態衛星測量之研究
★ 應用數值地型於立體空載SAR影像之分析★ 消去GPS相位模稜OTF相對定位之研究
★ 應用地形物元於衛載SAR影像匹配之研究★ 參數解關聯應用於GPS雙主站相位模稜求解
★ 衛載SAR地塊影像匹配之參數最佳化★ 最小二乘過濾法應用於動態GPS衛星定位平穩性之研究
★ GPS即時動態定位最佳化演算法比較研究★ Radarsat-1 SAR影像最小二乘匹配之研究
★ 方差與協方差分量於Radarsat-1地塊影像匹配之研究★ 率定GPS接收器時間偏差對高程定位精度提升之研究
★ 分塊輻射參數調整應用於不同來源影像之匹配與套合★ 利用多參考站模式化相對對流層天頂向延遲以進行GPS動態定位
★ 應用時間序列分析於GPS多路徑效應之研究★ 研究不同資源衛星影像之匹配與套合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 最近幾十年全球衛星導航系統(GNSS)已廣泛使用在導航、地球物理學和測量領域。然而隨著使用率的增長,對於精密度、準確度、可靠性和可用性的需求也隨之增加,因此為了達到相對嚴格的精密性,完整性和即時定位,載波相位的資料更顯得重要。使用載波相的關鍵是正確並有效地取得整數相位模稜。為了解決這個問題,目前已經發展了許多整數相位模稜解算法,而目前公認最佳的做法為最小二乘整數搜尋法。整數搜尋過程有三步驟:首先,使用標準最小二乘法並忽略整數相位模稜的整數特性,所得到的值稱為浮點解。接者使用整數估計將浮點解轉換到搜尋域並得到相當數量的候選解。最後,將候選解轉換回原域並帶回最小二乘以求最佳解。一般來說,候選解的數量會影響整體搜尋的效率,所以在減低候選解數量的上是可能達到提高效率的做法。零相關域轉換與門檻值(ZETA)有效的踢出過多候選解數量,達到效率層面上相當大的突破。但是,他將會面臨到門檻值不確定與嚴格的門檻使得無候選解可以通過門檻值,這樣的情況會造成相當大的誤差出現。近似零相關轉換與門檻值(AZETA)利用特徵值與特徵向量建構轉換矩陣與附加的檢核方法被提出來解決此問題,希望可以解決ZETA無候選解通過門檻值的情況之下依舊保有效率提升的特色。其中在21.3km的基線,三種方法包含傳統的整數搜尋、與使用ZETA、AZTEA方法的比較可以得到三個方法分別平均候選解數量為8.95、0.83與1.06個。其精度在東西方向分別為0.1458 m、0.6994 m與0.2792 m,在南北方向分別為0.2119 m、1.2254 m 與0.2865 m,在高程方向分別為0.9572 m、5.558 m與1.5489 m。從此結果上AZETA方法的確可以解決ZETA的無候選解通過的問題,達到精度與效率的平衡。
摘要(英) The use of Global Navigation Satellite Systems (GNSS) had increased over the past few decades and had been widely applied to navigation, surveying and geo-physics. Accompanied by the increasing demand, however, the requirements on its accuracy, precision, reliability, and availability had also been raised. The carrier phase measurements were extremely precise but there still was an ambiguity caused by an unknown number of cycles; this was the so-called integer-value.
To solve the problem, the integer ambiguity resolution algorithms had been developed. The main idea of integer estimation process consisted of three steps. First, use standard least-squares method was applied with the integer property of the ambiguities disregarded, and the float solutions were obtained. In the second step, the integer constraint of the ambiguities was considered. In the final step, the integer constraint of the ambiguities was considered. In other words, the float ambiguities were mapped to integer values. Normally, a
decorrelation technique would be used in this step to reduce the number of candidates reliably but the number were still too much. Of course, in the final step, the still-remained unknown parameters of the estimated integer-valued ambiguities were calculated by their correlations, and the solution was fixed.
A new technique could reduce the number of candidates by using float transformation and threshold domain. We proposed the method to reduce the number of candidates and keep the quality of so-called Zero-correlation Transformation for Ambiguity-resolution (ZETA). However, there exists no-candidate-passed problem in ZETA algorithm, and that cause significant errors. Therefore, in this thesis, a new method called Approximation ZEro-correlation Transformation for Ambiguity-resolution (AZETA) using eigenvalue and eigenvector in float transformation step and other methods in verified integer step was propose. In 23.1 km baseline, the mean number of candidates of three methods, traditional LLL method, ZETA and AZETA algorithm, are 8.95, 0.83 and 1.06 respectively. The final results on east-west direction are 0.1458 m, 0.6994 m, and 0.2792m; north-south direction are 0.2119 m, 1.2254 m and 0.2865 m; height direction are 0.9572 m, 5.5558 m, and 1.5489 m. These results really prove AZETA algorithm that can achieve the balance of accuracy and efficiency simultaneously.
關鍵字(中) ★ 全球衛星導航系統
★ 整數搜尋
★ 零相關域
★ 門檻值
關鍵字(英) ★ GNSS
★ Integer Searching
★ Zero-correlation
★ Threshold
論文目次 摘要 ?
Abstract ?
誌謝 ?
Table of Contents ?
List of Figures ?
List of Tables ?
Chapter 1. Introduction 1
1.1 Background 1
1.2Motivation 3
1.3Thesis Organization 4
Chapter 2. Global Navigation Satellite Systems 5
2.1 GNSS Project 5
2.1.1 GPS 5
2.1.2 Galileo 6
2.1.3GLONASS 7
2.1.4 BeiDou system 8
2.2 GNSS Measurements 9
2.2.1 Pseodorange 9
2.2.2 Carrier phase 10
2.3 Source of Errors 11
2.3.1 Ephemeris and clock errors 11
2.3.2 Tropospheric delay 12
2.3.3 Ionospheric delays 12
2.3.4 Multipath 12
2.3.5 Cycle slip 13
2.4 Difference Mode 13
Chapter 3. Carrier Phase Positioning and Integer Ambiguity Resolution 15
3.1 Parameter Estimation 16
3.2 Integer Estimation 18
3.2.1 Integer estimators 19
3.2.2 Integer searching 21
3.2.3 LLL algorithm 23
3.2.4 Whitening filter 27
Chapter 4. Float Transformation and Threshold Domain 29
4.1 ZETA Algorithm 29
4.2 AZETA Algorithm 35
4.2.1 Float transformation 35
4.2.2 Verified integer in threshold domain using different methods 39
4.2.3 Method 1 39
4.2.4 Method 2 42
Chapter 5. Experiment and Comparisons Results 46
5.1 Measuring Equipment and Data Background 46
5.2 Experiment Results on SPP0-MUST Baseline 48
5.3 Experiment Results on SPP0-NTPU Baseline 54
5.4 Experiment Results on SPP0-LANY Baseline 59
5.5 Experiment Results on SPP0-XINU Baseline 65
5.6 Experiment Results on PLIM-JUNA Baseline 70
Chapter 6. Conclusions and Summary 75
Bibliography 77
參考文獻 [1] Baselga, S., “Global optimization solution of robust estimation.”, Journal of Surveying Engineering, Vol. 133(3), pp.123?128, 2007.
[2] Blewitt, G., “Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km.”, Journal of Geophysical Research, Vol. 94(B8), pp. 10187–10230, 1989.
[3] Cao, W., “Multi-frequency GPS and Galileo kinematic positioning with partial ambiguity fixing.”, University of Calgary, MSc. Thesis, Calgary, 2009.
[4] Chen, Y.Z., Wu, J., “Zero-correlation transformation and threshold for efficient GNSS carrier phase ambiguity resolution.”, Journal of Geodesy, Vol. 87(10–12), pp.971–979, 2013.
[5] Dow, J. M., Neilan, R. E., and Rizos, C., “The international GNSS service in a changing landscape of global navigation satellite systems.”, Journal of Geodesy, Vol. 83(3?4), pp. 191?198, 2009.
[6] Falcone, M., “Galileo Programme Status.”, In Proceedings of 21st International Technical Meeting of the Satellite Division (ION GNSS-2008), pp.453–492, Savannah, GA, U.S.A., 2008.
[7] Grafarend, E.W., “Mixed integer-real valued adjustment (IRA) problems: GPS initial cycle ambiguity resolution by means of the LLL algorithm.”, GPS Solution, Vol. 4(2), pp.31?44, 2000.
[8] Hassibi, A., and Boyd, S., “Integer parameter estimation in linear models with applications to GPS.”, IEEE Transactions on Signal Processing, Vol.46(11), pp.2938–2952, 1998.
[9] Hatch, R., Jung, J., Enge, P., and Pervan, B., “Civilian GPS: the benefits of three frequencies.”, GPS Solutions, Vol. 3(4), pp.1?9, 2000.
[10]Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., GNSS?global navigation satellite systems., Springer, Wien, 2008.
[11] Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., Globl positioning system theory and practice., 4th edn., Springer, New York, 1997.
[12] Inaba, N., Matsumoto, A., Hase, H., Kogure, S., Sawabe, M., Terada, K., “Design concept of quasi zenith satellite system.”, Acta Astronaut, Vol.65, pp.1068–1075, 2009.
[13] Joosten, P., Tiberius, C., “Fixing the ambiguities, are you sure they’re right?”, GPS World, Vol. 11(5), pp.46–51, 2000.
[14] Koch, K. R., Parameter estimation and hypothesis testing in linear models., Springer, Berlin, 1999.
[15] Lenstra, A.K., Lenstra, H.W., and Lova ?sz, L., “Factoring polynomials with rational coefficients.”, Mathematische Annalen, Vol.261, pp. 515?534, 1982.
[16] Leick, A., GPS satellite surveying, 3rd edn., John Wiley & Sons, Inc., Hoboken, 2004.
[17] Lu, G., and Cannon, M. E., “Attitude determination using a multi-antenna GPS system for hydrographic applications.”, Marine Geodesy, Vol.17(4), pp.237?250, 1994.
[18] Li, M., Qu, L., Zha, Q., Guo, J., Su, X., and Li, X., “Precise Point Positioning with the BeiDou Navigation Satellite System.”, Sensors, Vol. 14(1), pp. 927?943, 2014.
[19] Marc, C., Stephanie, B., Omid, K., Paul, C., ”A systematic investigation of optimal carrier-phase combination for modernized triple-frequency GPS.”, Journal of Geodesy, Vol. 82(9), pp. 555–564, 2008.
[20] Mohamed, A.H., Schwarz, K.P., “A simple and economical algorithm for GPS ambiguity resolution on the fly using a whitening filter.”, Navigation, Vol.43(3), pp. 221?231, 1998.
[21] Montenbruck, O., Hauschild, A., Steigenberger, P., Hungentobler, U., Teunissen, P. J. G., Nakamura, S., “Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system.”, GPS Solution, Vol.17, pp.211–222.
[22] Pantoja, V. D. G., “Partial ambiguity fixing for precise point postioning with multiple frequencies in the presence of biases”, MsC. Thesis, Technische Universita ?t Mu ?nchen, Mu ?nchen, 2009.
[23] Teunissen, P. J. G., “The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation.”, Journal of Geodesy, Vol.70(1?2), pp. 65?82, 1995.
[24] Teunissen, P. J. G., de Jonge P.J., Tiberius, C.C.J.M., “Performance of the LAMBDA method for fast GPS ambiguity resolution.”, Navigation, Vol.44(3):373?383, 1997.
[25] Teunissen, P. J. G., “An optimality property of the integer least-squares estimator.”, Journal of Geodesy, Vol.73(11),pp. 587?593, 1999.
[26] Vennebusch, M., Nothnagel, A., and Kutterer, H., “Singular value decomposition and cluster analysis as regression diagnostics tools for geodetic applications.”, Journal of Geodesy, Vol. 83(9), pp. 877?891, 2009.
[27] Wang, J., Stewart, P. M., and Tsakiri, M., “A discrimination test procedure for ambiguity resolution on-the-fly.”, Journal of Geodesy, Vol. 72(11), pp. 644–653, 1998.
[28] Wu, J., and Hsieh, C.H., “GPS on-the-fly medium-length positioning by an estimation of the measurement variance.”, Journal of the Chinese Institute of Engineers, Vol. 31(3), pp.459?468.
[29] Wu, J. and Hsieh, C. H., “Statistical modeling for the mitigation of GPS multipath delays from day-to-day range measurements.”, Journal of Geodesy, Vol. 84(4), pp. 223?232, 2010.
[30] Wells, D., Beck, N., Delikaraoglou, D., Kleusberg, A., Krakiwsky, E. J., Lachapelle, G., Langlet, R. B., Nakiboglu, M., Schwarz, K. P., Tranquilla, J. M., and Vanicek, P., “Guide to GPS positioning.”, Canadian GPS Associates, Fredericton, 1987.
[31] Xu, P. L., “Random simulation and GPS decorrelation.”, Journal of Geodesy, Vol.75(7?8), pp.408?423, 2001.
[32] 林修國,「相位模稜求定與時鐘偏差估計應用與衛星相對定位姿態求解」,國立中央大學,博士論文,民國86年。
[34] 徐浩雄,「白化濾波應用於GPS動態衛星定位測量研究」,國立中央大學,碩士論文民國 89年。
[33] 陳揚仁,「演算法LLL與白化濾波應用於導航衛星相位模稜搜尋」,國立中央大學,碩士論文,民國 98年。
[35] 游豐吉,「應用GPS 載波相位餘弦模式於衛星測量之研究」,國立中央大學,博士論文,民國88年。
[36] 葉添福,「最小二乘過濾法應用於動態GPS 衛星定位平穩性之研究」,國立中央大學,碩士論文,民國92年。
[37] 謝吉修,「GPS 即時動態定位最佳化演算法比較研究」,國立中央大學,碩士論文,民國92年。
指導教授 吳究(Joz Wu) 審核日期 2014-5-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明