博碩士論文 93224014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.135.247.94
姓名 李易諠(Yi-Hsuan Lee)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
(Functional study of N-terminal domain of a rice small heat shock protein, Oshsp16.9A)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 植物逆境蛋白質基因啟動子與功能分析
★ 植物受溫度調控之基因的功能與機制分析★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討
★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析★ 受熱與ABA調控基因AtRZFP33之生理功能分析
★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究
★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析
★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 小分子量熱休克蛋白質(Small heat shock proteins; sHSPs)可以分成七群,主要生理功能在熱逆境下避免不正常的蛋白質聚集,具不需要消耗能量(ATP)的chaperone活性。水稻小分子量熱休克蛋白質Oshsp16.9A第二保留區的第73和74個胺基酸已經被證實為與substrate產生交互作用的位置,去除此區域時會造成chaperone活性喪失。本篇論文,主要在了解Oshsp16.9A的N端區域在chaperone活性上所扮演的角色。因此,建構了N端區域刪除的Oshsp16.9A片段,利用大腸桿菌表現,經純化後進行生理功能試驗分析。結果顯示N端區域刪除的Oshsp16.9A片段在形成蛋白質複合體(protein complex)上發生困難,去除N端29個以上的胺基酸時會喪失chaperone活性,若去除N端35個以上的胺基酸時,會造成oligomers不穩定。雖然Oshsp16.9AN11-150(刪除N端第一至第十個胺基酸區域的Oshsp16.9A)無法形成正常的蛋白質複合體(protein complex),但仍具有Oshsp16.9AFL一樣的chaperone活性,因此推測N端第一至第十個胺基酸區域在suboligomers間的相互作用上,扮演重要的角色;此外,試管內(in vitro)功能分析顯示第11到29個胺基酸區域在幫助suboligomers提供chaperone活性時是很重要的;根據Glutaraldehyde cross-link結果得知,第30到35個胺基酸區域是負責穩定suboligomers的形成。雖然Oshsp16.9AFL和Oshsp16.9AN11-150在試管內實驗都具有chaperone活性,但在活體(in vivo)實驗中,卻無法增加耐熱性。然而,大量表現Oshsp16.9AN30-150(刪除N端第一至第十個胺基酸區域的Oshsp16.9A), Oshsp16.9AN37-150(刪除N端第一至第三十六個胺基酸區域的Oshsp16.9A), Oshsp16.9AN43-150(刪除N端第一至第四十二個胺基酸區域的Oshsp16.9A)時卻比沒有蛋白質表現時,在高溫情況下造成更多的死亡。因此,我們推測大量表現Oshsp16.9A對於大腸桿菌菌種BL21 (DE3)的耐熱性,不會提供有效地幫助。此外,N端區域缺失的突變Oshsp16.9A大量的表現將會干擾大腸桿菌菌種BL21 (DE3)天生的耐熱性。
摘要(英) Small heat shock proteins (sHSPs) can be divided into seven classes and exhibit ATP-independent molecular chaperone activity that can prevent denaturing proteins from aggregation. Rice (Oryza sativa) class I small heat shock protein, Oshsp16.9A, has been shown to be able to confer thermotolerance in Escherichia coli. The deletion of amino acid residues 73 and 74 in the consensus II domain of Oshsp16.9A led to loss of chaperone activity. Here we try to understand the role of the N-terminus of Oshsp16.9A in chaperone activity. Therefore, the N-terminus deletion mutants of Oshsp16.9A were constructed and overexpressed in E. coli cells for analyzing protein function. We found that the N-terminus deletion mutants of Oshsp16.9A could not form protein complex as Oshsp16.9A did. The deletion of N-terminal 1 through 29 amino acid residues of Oshsp16.9A led to the loss of chaperone activity. Besides, the deletion of N-terminal 1 through 35 amino acid residues of Oshsp16.9A caused oligomer unstable. Although Oshsp16.9AN11-150 could not form similar size of protein complex as Oshsp16.9AFL did, Oshsp16.9AN11-150 still had chaperone activity as Oshsp16.9AFL did. Therefore, it is suggested that the region of 1st to 10th amino acid of Oshsp16.9A plays an important role in suboligomer-suboligomer interaction. According to the analysis of in vitro chaperone activity, the region of 11th to 29th amino acid of Oshsp16.9A is important for its chaperone activity. Moreover, using glutaraldehyde cross-linking, the function of the region of 30 through 35 amino acid of Oshsp16.9A was found stabilize formation of suboligomers. Although Oshsp16.9AFL and Oshsp16.9AN11-150 have chaperone activity in vitro, they did not confer thermoprotection in E. coli. On the other hand, overexpression of Oshsp16.9AN30-150, Oshsp16.9AN37- 150, and Oshsp16.9AN43-150 caused lower survival rates than that of control under high temperature. Therefore, we suggested that overexpression of Oshsp16.9A did not help thermotolerance efficiently in E. coli strain BL21 (DE3). Furthermore, overexpression of Oshsp16.9A N-terminal mutants would interfere with natural thermotolerance of E. coli strain BL21 (DE3).
關鍵字(中) ★ 小分子量熱休克蛋白質
★ N端區域
關鍵字(英) ★ heat
★ small heat shock protein
★ N-terminal region
★ hsp16.9A
論文目次 Chinese abstract-----------------------------I
Abstract--------------------------------II
Contents-------------------------------III
List of abbreviations--------------------------VI
Chapter 1. Introduction
1.1 The heat stress----------------------------1
1.2 Classification of HSPs and Property of HSPs----------------1
1.3 Classification of Plant sHSP-----------------------2
1.4 Structure of sHSPs---------------------------3
1.5 Interaction Region of sHSPs-----------------------4
1.6 History of Rice Oshsp16.9A-----------------------5
1.7 Specific Aim-----------------------------6
Chapter 2. Materials and Methods
2.1 Preparation of Oshsp16.9A Expression Constructs:
(A) PCR (Polymerase Chain Reaction) -------------------7
(B) Extraction of Plasmid DNA ----------------------7
(C) Digestion-----------------------------8
(D) Gel Elution----------------------------8
(E) Ligation------------------------------9
2.2 Expression and Purification of the OsHSPs----------------10
2.3 Preparation of PAGE-------------------------10
2.4 Native PAGE Analysis------------------------12
2.5 Glutaraldehyde Cross-link-----------------------12
2.6 Western Blotting---------------------------13
2.7 Size Exclusion Chromatography (SEC) of the OsHSPs----------13
2.8 Assays of Chaperone Activity---------------------14
2.9 Thermotolerance Assays for Transformants----------------14
Chapter 3. Results
3.1 Construction and Expression of Oshsp16.9A Variants------------16
(A) Induction of Oshsp16.9A variants in E. coli strain BLR (DE3)--------16
(B) Purification of Oshsp16.9A variants------------------17
3.2 Conformation Analysis of Oshsp16.9A Variants---------------17
(A) Analysis of the native complexes of Oshsp16.9A variants using native PAGE--17
(B) Characterization of oligomerization of Oshsp16.9A variants using glutaraldehyde----
cross-link-----------------------------17
(C) Study of the sizes of complexes of Oshsp16.9A variants using SEC------18
3.3 Activity Assay of Oshsp16.9A Variant in Vitro--------------18
(A) Chaperone activity of Oshsp16.9A variants---------------18
(B) Binding substrate activity of Oshsp16.9A variants------------18
3.4 Assay of Thermotolerance of E. coli Expressing Oshsp16.9A Variants in Vivo---19
(A) Thermotolerance of E. coli expressing Oshsp16.9A variants---------19
(B) The effects of E. coli expressing Oshsp16.9A variants at high temperature---19
Chapter 4. Discussion
4.1 N-terminus of Oshsp16.9A plays an important role in oligomerization------20
4.2 N-terminal
參考文獻 Abulimiti, A., Qiu, X., Chen, J., Liu, Y., and Chang, Z. (2003). Reversible methionine sulfoxidation of Mycobacterium tuberculosis small heat shock protein Hsp16.3 and its possible role in scavenging oxidants. Biochem Biophys Res Commun 305, 87-93.
Anil, B., Sato, S., Cho, J.H., and Raleigh, D.P. (2005). Fine structure analysis of a protein folding transition state; distinguishing between hydrophobic stabilization and specific packing. J Mol Biol 354, 693-705.
Aufricht, C., Lu, E., Thulin, G., Kashgarian, M., Siegel, N.J., and Van Why, S.K. (1998). ATP releases HSP-72 from protein aggregates after renal ischemia. Am J Physiol 274, F268-274.
Augusteyn, R.C. (2004). alpha-crystallin: a review of its structure and function. Clin Exp Optom 87, 356-366.
Ayling, A., and Baneyx, F. (1996). Influence of the GroE molecular chaperone machine on the in vitro refolding of Escherichia coli beta-galactosidase. Protein Sci 5, 478-487.
Basha, E., Lee, G.J., Demeler, B., and Vierling, E. (2004). Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271, 1426-1436.
Bhattacharyya, J., Padmanabha Udupa, E.G., Wang, J., and Sharma, K.K. (2006). Mini-alphaB-crystallin: a functional element of alphaB-crystallin with chaperone-like activity. Biochemistry 45, 3069-3076.
Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F.X., and Kiefhaber, T. (1991). GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586-1591.
Craig, E.A. (1985). The heat shock response. CRC Crit Rev Biochem 18, 239-280.
Craig, W.S. (1988). Determination of quaternary structure of an active enzyme using chemical cross-linking with glutaraldehyde. Methods Enzymol 156, 333-345.
de Jong, W.W., Leunissen, J.A., and Voorter, C.E. (1993). Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10, 103-126.
de Jong, W.W., Caspers, G.J., and Leunissen, J.A. (1998). Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol 22, 151-162.
Derocher, A.E., Helm, K.W., Lauzon, L.M., and Vierling, E. (1991). Expression of a Conserved Family of Cytoplasmic Low Molecular Weight Heat Shock Proteins during Heat Stress and Recovery. Plant Physiol 96, 1038-1047.
Ehrnsperger, M., Hergersberg, C., Wienhues, U., Nichtl, A., and Buchner, J. (1998). Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal Biochem 259, 218-225.
Ghosh, J.G., and Clark, J.I. (2005). Insights into the domains required for dimerization and assembly of human alphaB crystallin. Protein Sci 14, 684-695.
Ghosh, J.G., Estrada, M.R., and Clark, J.I. (2005). Interactive domains for chaperone activity in the small heat shock protein, human alphaB crystallin. Biochemistry 44, 14854-14869.
Guan, J.C., Jinn, T.L., Yeh, C.H., Feng, S.P., Chen, Y.M., and Lin, C.Y. (2004). Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol Biol 56, 795-809.
Guruprasad, K., and Shukla, S. (2003). Prediction of beta-turns from amino acid sequences using the residue-coupled model. J Pept Res 61, 159-162.
Guruprasad, K., and Kumari, K. (2003). Three-dimensional models corresponding to the C-terminal domain of human alphaA- and alphaB-crystallins based on the crystal structure of the small heat-shock protein HSP16.9 from wheat. Int J Biol Macromol 33, 107-112.
Hartman, D.J., Surin, B.P., Dixon, N.E., Hoogenraad, N.J., and Hoj, P.B. (1993). Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro. Proc Natl Acad Sci U S A 90, 2276-2280.
Haslbeck, M. (2002). sHsps and their role in the chaperone network. Cell Mol Life Sci 59, 1649-1657.
Haslbeck, M., and Buchner, J. (2002). Chaperone function of sHsps. Prog Mol Subcell Biol 28, 37-59.
Horwitz, J., Emmons, T., and Takemoto, L. (1992). The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent. Curr Eye Res 11, 817-822.
Iannotti, A.M., Rabideau, D.A., and Dougherty, J.J. (1988). Characterization of purified avian 90,000-Da heat shock protein. Arch Biochem Biophys 264, 54-60.
Jakob, U., and Buchner, J. (1994). Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci 19, 205-211.
Jakob, U., Gaestel, M., Engel, K., and Buchner, J. (1993). Small heat shock proteins are molecular chaperones. J Biol Chem 268, 1517-1520.
Jinn, T.L., Chen, Y.M., and Lin, C.Y. (1995). Characterization and Physiological Function of Class I Low-Molecular-Mass, Heat-Shock Protein Complex in Soybean. Plant Physiol 108, 693-701.
Jinn, T.L., Chang, P., Chen, Y.M., Key, J.L., and Lin, C.Y. (1997). Tissue-Type-Specific Heat-Shock Response and Immunolocalization of Class I Low-Molecular-Weight Heat-Shock Proteins in Soybean. Plant Physiol 114, 429-438.
Kim, K.I., Woo, K.M., Seong, I.S., Lee, Z.W., Baek, S.H., and Chung, C.H. (1998a). Mutational analysis of the two ATP-binding sites in ClpB, a heat shock protein with protein-activated ATPase activity in Escherichia coli. Biochem J 333 ( Pt 3), 671-676.
Kim, K.K., Kim, R., and Kim, S.H. (1998b). Crystal structure of a small heat-shock protein. Nature 394, 595-599.
Kim, R., Kim, K.K., Yokota, H., and Kim, S.H. (1998c). Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci U S A 95, 9129-9133.
Lambert, H., Charette, S.J., Bernier, A.F., Guimond, A., and Landry, J. (1999). HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274, 9378-9385.
Larkindale, J., and Knight, M.R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128, 682-695.
Lee, G.J., and Vierling, E. (2000). A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122, 189-198.
Lee, G.J., Roseman, A.M., Saibil, H.R., and Vierling, E. (1997). A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. Embo J 16, 659-671.
Ma, C., Haslbeck, M., Babujee, L., Jahn, O., and Reumann, S. (2006). Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141, 47-60.
Merck, K.B., Horwitz, J., Kersten, M., Overkamp, P., Gaestel, M., Bloemendal, H., and de Jong, W.W. (1993). Comparison of the homologous carboxy-terminal domain and tail of alpha-crystallin and small heat shock protein. Mol Biol Rep 18, 209-215.
Miernyk, J.A., Duck, N.B., Shatters, R.G., Jr., and Folk, W.R. (1992). The 70-Kilodalton Heat Shock Cognate Can Act as a Molecular Chaperone during the Membrane Translocation of a Plant Secretory Protein Precursor. Plant Cell 4, 821-829.
Mogk, A., Mayer, M.P., and Deuerling, E. (2002). Mechanisms of protein folding: molecular chaperones and their application in biotechnology. Chembiochem 3, 807-814.
Mogk, A., Deuerling, E., Vorderwulbecke, S., Vierling, E., and Bukau, B. (2003). Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50, 585-595.
Nieto-Sotelo, J., Kannan, K.B., Martinez, L.M., and Segal, C. (1999). Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue. Gene 230, 187-195.
Ohtsuka, K., Utsumi, K.R., Kaneda, T., and Hattori, H. (1993). Effect of ATP on the release of hsp 70 and hsp 40 from the nucleus in heat-shocked HeLa cells. Exp Cell Res 209, 357-366.
Parsell, D.A., and Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27, 437-496.
Parsell, D.A., Taulien, J., and Lindquist, S. (1993). The role of heat-shock proteins in thermotolerance. Philos Trans R Soc Lond B Biol Sci 339, 279-285; discussion 285-276.
Parsell, D.A., Kowal, A.S., and Lindquist, S. (1994a). Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. J Biol Chem 269, 4480-4487.
Parsell, D.A., Kowal, A.S., Singer, M.A., and Lindquist, S. (1994b). Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475-478.
Ritossa, P. (1962). [Problems of prophylactic vaccinations of infants.]. Riv Ist Sieroter Ital 37, 79-108.
Scharf, K.D., Siddique, M., and Vierling, E. (2001). The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6, 225-237.
Schirmer, E.C., Glover, J.R., Singer, M.A., and Lindquist, S. (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21, 289-296.
Sharma, K.K., Kumar, R.S., Kumar, G.S., and Quinn, P.T. (2000). Synthesis and characterization of a peptide identified as a functional element in alphaA-crystallin. J Biol Chem 275, 3767-3771.
Sigler, P.B., Xu, Z., Rye, H.S., Burston, S.G., Fenton, W.A., and Horwich, A.L. (1998). Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67, 581-608.
Song, C.W., Kang, M.S., Rhee, J.G., and Levitt, S.H. (1980). The effect of hyperthermia on vascular function, pH, and cell survival. Radiology 137, 795-803.
Theriault, J.R., Lambert, H., Chavez-Zobel, A.T., Charest, G., Lavigne, P., and Landry, J. (2004). Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem 279, 23463-23471.
Van Montfort, R., Slingsby, C., and Vierling, E. (2001). Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59, 105-156.
Van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C., and Vierling, E. (2001). Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8, 1025-1030.
Waters, E.R. (1995). The molecular evolution of the small heat-shock proteins in plants. Genetics 141, 785-795.
Waters, E.R., and Schaal, B.A. (1996). Heat shock induces a loss of rRNA-encoding DNA repeats in Brassica nigra. Proc Natl Acad Sci U S A 93, 1449-1452.
Waters, E.R., and Vierling, E. (1999). The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16, 127-139.
Yeh, C.H., Chen, Y.M., and Lin, C.Y. (2002). Functional regions of rice heat shock protein, Oshsp16.9, required for conferring thermotolerance in Escherichia coli. Plant Physiol 128, 661-668.
Yeh, C.H., Yeh, K.W., Wu, S.H., Chang, P.F., Chen, Y.M., and Lin, C.Y. (1995). A recombinant rice 16.9-kDa heat shock protein can provide thermoprotection in vitro. Plant Cell Physiol 36, 1341-1348.
Yeh, C.H., Chang, P.F., Yeh, K.W., Lin, W.C., Chen, Y.M., and Lin, C.Y. (1997). Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci U S A 94, 10967-10972.
Yeh, K.W., Jinn, T.L., Yeh, C.H., Chen, Y.M., and Lin, C.Y. (1994). Plant low-molecular-mass heat-shock proteins: their relationship to the acquisition of thermotolerance in plants. Biotechnol Appl Biochem 19 ( Pt 1), 41-49.
指導教授 葉靖輝(Ching-Hui Yeh) 審核日期 2006-11-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明