博碩士論文 92246015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.191.200.151
姓名 路建華(Jiann-Hwa Lue)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 非接觸暨無螢光標定即時生物醫學感測器之研究
(Study of Real-Time Non-Contact and Label-Free Biomedical Sensors)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 本論文旨在探討TE偏振入射光入射至次波長(週期< λ)的Lamellar光柵波導感測器時,光柵及波導之厚度對其靈敏度的影響。此外,吾人也成功的研製出非接觸式即時音波脈搏量測器,作為傳統中醫師把脈的有效且客觀的參考依據。
Lamellar光柵厚度對感測器靈敏度的模擬結果顯示,感測器的共振模態將會隨Lamellar 光柵的厚度增加而增加。證實了Lamellar 光柵在物理上,確實具有ㄧ等效折射率之波導層的特性。儘管如此,在靈敏度模擬時,結果顯示其基態模(fundamental mode)之峰值位移在同樣波導厚度時,卻難以區別。其次,波導厚度對Lamellar光柵耦合波導感測器的模擬結果顯示,感測器的共振模態也將會隨著波導的厚度增加而變多。引導模式和基本模式的靈敏度的變化也進行了研究。計算結果表明,較厚的波導層將誘發更多的導模。比較不同波導厚度的基模的光譜靈敏度,較薄的波導層的峰值位移遠大於波導層較厚者。換句話說,較薄的波導層是一種使用傳感器的一個更好的選擇。
本研究之內容規劃如後 :第一章討論無螢光標定生物傳感器發展的近況,包括目前技術的概述:表面等離子體共振(Surface Plasmon Resonant) ,干涉式感測器(Interference Sensor),光學波導(Waveguide),光纖(Optical fiber),光子晶體(Photonic crystal)等類型的生物感測器。
第二章為光柵耦合式波導之基本理論與模擬方法介紹。旨在將近期各種光柵耦合式波導之相關理論,作系統化之整理與說明,並簡述此類波長光譜峰值的取值方式。
第三章探討一維Lamellar 光柵耦合式光子晶體感測器與效率的關係。個人利用精確耦合波分析法(rigorous coupled-wave analysis method)及有限時域插分法(finite difference time domain, FDTD)計算一維週期性低折射率Lamellar光柵之厚度與波長關係。模擬結果顯示,隨著光柵結構厚度的增加,將會誘發更多的高階導模。然而,基模(fundamental mode)的峰值(peak wavelength)位置,主要由波導層之厚度來決定。在感測器對生物鍵結敏感度的模擬,我們設定一等效折射率(effective refractive index)接近水(nf =1.334)薄膜層取代生物反應層。模擬的結果顯示,即便光柵厚度較薄者(dg=100nm),當等效生物層厚度增加至1000nm時,感測器之峰值波長位移(peak wavelength shift, PWS) 為5.1 nm ,不足作為敏感度量測標準。若參考導模峰值之Q值(Quality Value, Q-Value),當薄膜層厚度少於100nm時,Q值的差異則十分明顯。因此,當波導厚度相同而光柵深度不同時,Q值可作為感測器敏感度之有效參考。
第四章旨於探討波導層厚度對Lamellar 光柵耦合光感測器之敏感度,參考第二章之結果,將光柵之厚度設為100nm(薄光柵),探討其反射率能帶(energy band),並就薄、厚光柵層(100nm, 1000nm),在不同厚度之波導,其導模特性進行模擬。模擬結果顯示,波導厚度增加將誘發更多高階模態,且結合100nm之薄光柵層之波導感測器,波導厚度越薄者,其基態模的變化率遠大於較厚者,由此可見,用作為感測器之光柵波導,不論光柵或波導之厚度,厚度越薄,其靈敏度越高。
第五章與第六章旨在研究並製造高敏感度單音頻與雙音頻之音波量測器,以作為傳統中國醫學脈診之客觀參考依據。吾人以簡單的電容式麥克風作為音頻接收器,搭配商用LabVIEW 軟體,設計出高度音頻敏感的脈搏診測器,藉由量測出之脈搏訊號波形,進行傅立葉轉換(Fourier Transform),除了可得到受測者之生物健康訊號,更可提供中醫師脈診之即時且可靠的參考,更重要的是,此為非接觸無害式可重複使用之量測器,可以節省患者就診時冗長的等待時間,也可有效的為不適移動之患者提供即時診斷。本研究之設計理念,主要是希望以一般的筆記型電腦,搭配一些隨手可得的電子元件,製作出簡易且低成本的音頻脈搏感測器。實驗結果證明,我們不但可以用單音頻音效卡正確的擷取出單音頻脈搏信號,也可以用雙音頻感測器正確無誤的獲取並解調出相關的脈搏訊號。我們深信此即時非接觸式之脈搏音頻量測技術,可有效的提供中醫師在脈診時的客觀診斷參考,以降低脈診人為失誤的機率。未來,若將此技術應用在中醫脈診的測量上,也可大幅的節省診斷時多餘的物力及時間耗費。
摘要(英) The purpose of this thesis is to investigate the thickness effects on sub-wavelength (period <λ) Lamellar grating waveguide sensors with TE polarization incidence and the effects of waveguide thickness on the sensitivity of the sub-wavelength Lamellar grating waveguide sensor with TE polarization incidence. In addition, two simple and low cost prototypes of real-time non-contact pulse measurement devices have been successfully developed; they could be useful, efficient and objective reference for Traditional Chinese Medicine (TCM) pulse diagnosis.
According to the simulation result of Lamellar grating thickness versus sensor sensitivity, it reveals that as the thickness of Lamellar grating is increased, the more resonance modes will be induced as well. This proves that the Lamellar grating possesses the characteristics of the effective refractive index waveguide layer in physics. However, it is difficult to recognize the peak shift of the fundamental mode while the thickness of grating is different and the thickness of waveguide is the same. On the other hand, referring to the simulation of the effects of waveguide thickness on the sensitivity of the sub-wavelength Lamellar grating, the calculation shows that the thicker waveguide layer will induce more guided modes. Also, the variation of guided modes and the sensitivity of fundamental mode are investigated. Comparing the spectrum sensitivity of fundamental mode of different waveguide thickness, the peak shift of the thinner waveguide layer is larger than the thicker one’s. In other words, thinner waveguide layer is a better selection for the use of sensor.
The first chapter discusses the overview of present techniques of label-free biosensor, optical label-free biosensor structures including: surface plasmon resonance, interference sensor, optical waveguide, optical fiber, photonic crystal and the detection limits of optical biosensors.
The second chapter mentions the basic theory of the grating-coupled waveguide and makes a brief introduction of simulation method. The purpose is to systematize various theories of relevant grating-coupled waveguide and to do a brief introduction of how to estimate the wavelength spectrum peak.
The third chapter talks about thickness effects on the Lamellar grating waveguide sensors with TE-polarization incidence. The relationship between the Lamellar grating coupled sensor and efficiency is discussed. Rigorous coupled wave analysis (RCWA) method and finite difference time domain (FDTD) are used to calculate the relationship between the thickness of one-dimension low refractive Lamellar grating and the wavelength. Simulation results reveal that as the thickness of Lamellar grating is increased, the more high order modes will be induced. Nevertheless, the position of peak wavelength of the fundamental mode is mainly determined by the thickness of the waveguide layer. Concerning about the simulation of sensor sensitivity, we set a thin film of the effective refractive index close to water (defined as nf = 1.334) to replace the bio donor and acceptor layer. Simulation result reveals that for the thinner grating (dg = 100nm), the thickness of the bio donor and acceptor layer is increased to 1000nm, the maxima peak wavelength shift (PWS), δλmax=λP. Longest -λP. shortest = 742.48-737.38, is 5.1 nm, still unable to be treated as sensitivity measurement standard. However, if we refer to the Q-value (quality value) of peak wavelength of the guided modes, as the thin film thickness is less than 100nm, Q-value difference is easy to be recognized. Therefore, while waveguide thickness is the same and the grating thickness is different, Q-value could be a valid index for the sensitivity.
The fourth chapter focuses on waveguide thickness effects on the sensitivity of the sub-wavelength Lamellar grating waveguide sensor. Referring to Chapter 3, the thinner grating defined as dg=100nm and the energy band of thinner structure are studied. Also, we study the characteristics of guided modes while the grating thickness dg=100nm and dg=1000nm are under different waveguide thickness (dWG). The calculation results show that the thicker waveguide layer will induce more guided modes. Comparing the spectrum sensitivity of fundamental mode of different waveguide thickness, the peak shift of the thinner waveguide layer is larger than the thicker one’s. Therefore, no matter we take the grating thickness or the waveguide thickness as grating waveguide sensors, less thickness has higher sensitivity.
Chapter five and Chapter six respectively present that simple and low cost prototypes of single-channel and two-channel sound detectors are fabricated as pulse measurement devices; they are useful tool and objective reference for Traditional Chinese Medicine pulse diagnosis. A simple high sensitivity condenser microphone is used as receiver. With commercial LabVIEW software program, we have designed highly sensitive pulse diagnosis detector. By the vibration signals of pulse and performing Fourier Transform, we cannot only obtain the signals of health conditions of individuals, but also provide a real-time and reliable data for TCM pulse diagnosis. Most importantly, these are non-contact, harmless, and reusable measurement devices; the patients do not need to waste time for waiting and the doctors can do immediate and efficient diagnosis for the patients who are not able to move or to be moved physically. This study designs and fabricates a simple and low cost pulse measurement based on a commercial laptop. The measurement results demonstrate that pulse signals are acquired correctly and two-channel sound detectors can successfully acquire vibration signals of pulse. As a result, these non-contact pulse measurement devices can promote the development of Traditional Chinese Medicine and reduce the cost for disease diagnosis.
關鍵字(中) ★ 感測器
★ 生醫
★ 免標定
★ 即時的
★ 非接觸式
★ Lamellar光柵
★ 基態模
★ 次波長
★ TE 偏振
關鍵字(英) ★ Sensors
★ Biomedical
★ Label-Free
★ Real-Time
★ Non-Contact
★ Lamellar grating
★ fundamental mode
★ sub-wavelength
★ TE polarization
論文目次 中 文 摘 要 I
ABSTRACT IV
致 謝 VII
CONTENT IX
LIST OF FIGURES XII
LIST OF TABLES XVI
CHAPTER 1 INTRODUCTION 1
1-1 OVERVIEW OF PRESENT TECHNIQUES OF LABEL FREE OPTICAL BIOSENSOR 1
1-2 CLASSIFICATION OF MAJORITY OPTICAL BIOSENSORS 3
1-2-1 SURFACE PLASMON RESONANCE BASED BIOSENSORS 3
1-2-2 INTERFEROMETER-BASED BIOSENSORS-- MACH-ZEHNDER INTERFEROMETER 7
1-2-3 OPTICAL WAVEGUIDE BASED BIOSENSORS 9
1-2-4 OPTICAL FIBER BASED BIOSENSORS 11
1-2-4(a) Fiber Bragg grating and long-period grating-based Biosensors 11
1-2-4(b) Other optical fiber based label-free Biosensors 13
1-2-5 PHOTONIC CRYSTAL BASED SENSORS 16
1-3 LABEL-FREE OPTICAL BIOSENSORS 18
1-4 DETECTION LIMITS OF OPTICAL BIOSENSORS IN BULK SOLUTION 24
1-5 OUTLINE OF THE THESIS 25
CHAPTER 2 NUMERICAL METHODS AND FITTING METHODS USED FOR OPTICAL BIOSENSORS 26
2-1 WAVE EQUATION OF ELECTROMAGNETIC 27
2-2 GUIDED WAVES IN THREE LAYERS DIELECTRIC SLABS 29
2-3 PERIODIC MEDIUM 33
2-4 BRAGG LAW AND GRATING EQUATIONS 34
2-5 COUPLED-WAVE THEORY OF LAMELLAR GRATING 38
2-6 WAVEGUIDE GRATING RESONANT THEORY 42
2-7 SIMULATION METHODS AND MODE-FITTING APPROACH 45
2-7-1 Simulation methods 45
2-7-2 Resonance mode Fitting approach 48
CHAPTER 3 THICKNESS EFFECTS ON THE LAMELLAR GRATING WAVEGUIDE SENSORS WITH TE-POLARIZATION INCIDENCE 54
3-1 BRIEF OF 1-D PHOTONIC CRYSTAL BIOSENSOR 54
3-2 REFLECTION SPECTRUM OF LAMELLAR GRATING 55
3-3 REFLECTIVE SPECTRUM OF DIFFERENT THICKNESS OF LAMELLAR GRATING 58
3-4 SENSITIVITY AFFECTED BY GRATING THICKNESS 60
3-5 SUMMARY 63
CHAPTER 4 WAVEGUIDE THICKNESS EFFECTS ON THE SENSITIVITY OF LAMELLAR GRATING WAVEGUIDE SENSOR WITH TE-POLARIZATION INCIDENCE 65
4-1 ANALYSIS METHODS AND MATERIALS 65
4-2 ENERGY BAND OF THINNER STRUCTURE 65
4-3 REFLECTION SPECTRUM OF DIFFERENT THICKNESS OF LAMELLAR GRATING 69
4-4 ELECTROMAGNETIC FIELD DISTRIBUTION OF DIFFERENT MODES 71
4-5 SENSITIVITY AFFECTED BY WAVEGUIDE THICKNESS 72
4-6 SUMMARY 73
CHAPTER 5 LOW COST PROTOTYPE OF PULSE MEASUREMENT DEVICES 75
5-1 BRIEF OF PULSE MEASUREMENT DEVICES 75
5-2 PULSE MEASUREMENT DEVICES EXPERIMENTAL SETUP 76
5-3 MEASUREMENT RESULT AND DISCUSSION 79
5-4 SUMMARY 81
CHAPTER 6 SIMPLE TWO-CHANNEL SOUND DETECTORS APPLYING TO PULSE MEASUREMENT 82
6-1 BRIEF OF TWO-CHANNEL SOUND DETECTORS 82
6-2 EXPERIMENTAL SETUP OF TWO-CHANNEL SOUND DETECTORS 83
6-3 RESULT AND DISCUSSION 86
6-4 SUMMARY 89
CHAPTER 7 CONCLUSION 90
PUBLICATION LIST 92
REFERENCE 94
參考文獻 [1] Bince John, “Optical Biosensors for Unlabeled Bio-molecules Detection: Future Development Trends”, Third National Conference on Modern Trends in Electronic Communication & Signal Processing 2013.
[2] Xudong Fan, et al, “Sensitive optical biosensors for unlabeled targets: A review”, analytica chimica acta, 6 2 0, P.P. 8–26, 2 0 0 8.
[3] R. Narayana swamy, O.S. Wolfbeis, “Optical Sensors: Industrial, Environmental and Diagnostic Applications”, Springer, New York, 2004.
[4] W.E. Moerner, “New directions in single-molecule imaging and analysis”, Proc. Natl. Acad. Sci., 104, P.P. 12596, 2007.
[5] Ji?i Homola, “Present and future of surface plasmon resonance biosensors”, Anal Bioanal Chem, 377, P.P. 528–539, 2003.
[6] Shawn O’Malley, “Recent advances in label-free biosensors applications in protein biothesis and HTS screening”, Nova Science Publishers, Inc, ISBN 978-1-60692-156-2, 2008.
[7] B. Liedberg, C. Nylander, I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing”, Sens. Actuators, P.P. 4299, 1983.
[8] K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement”, Appl. Opt. 27, P.P. 1160-1163, 1988.
[9] B. Liedberg, I. Lundstrom, E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance”, Sens. Actuators B Chem. 11, P.P. 63, 1993.
[10] A.K. Sharma, R. Jha, B.D. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review”, IEEE Sens. J. 7, P.P. 1118, 2007.
[11] F. Yu, S. Tian, D. Yao, W. Knoll, “Surface Plasmon Enhanced Diffraction for Label-Free Biosensing”, Anal. Chem. 76, P.P. 3530-3535, 2004.
[12] C.J. Alleyne, et al, “Enhanced SPR sensitivity using periodic metallic Structures”, Opt. Express 15, P.P. 8163-8169, 2007.
[13] Reather H, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer tracts in modern physics, vol 111. Springer, Berlin Heidelberg New York, 1983.
[14] J. Homola, Anal. Bioanal. “Present and future of surface plasmon resonance biosensors”, Chem. 377, P.P. 528, 2003.
[15] A.K. Sharma, R. Jha, B.D. Gupta, “Fibre-optic sensor based on surface plasmon resonance with Ag–Au alloy nanoparticle ?lms”, IEEE Sens. J. 7, P.P. 1118, 2007.
[16] R. Slav’?k, J. Homola, J. Cˇ tyroky’ , E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance”, Sens. Actuators B Chem. 74, P.P. 106-111, 2001.
[17] J.T. Hastings et al., “Optimal self-referenced sensing using long- and short- range surface plasmons”, Opt. Express 15, P.P. 17662-17672, 2007.
[18] R.C. Jorgenson, S.S. Yee, " A fiber-optic chemical sensor based on surface plasmon resonance”, Sens. Actuators B Chem. 12, P.P. 213-220, 1993.
[19] Stefania Dante, et al., “All-optical phase modulation for integrated interferometric biosensors”, OPTICS EXPRESS, Vol. 20, No. 7, P.P. 7195-7205, 26 March 2012.
[20] A. Ymeti, J.S. Kanger, et al., “Realization of a multichannel integrated Young interferometer chemical sensor”, Appl. Opt. 42, P.P. 5649-5660, 2003.
[21] Stefania Dante, et al, “All-optical phase modulation for integrated interferometric biosensors”, OPTICS EXPRESS, Vol. 20, No. 7, P.P. 7195-7205, 26 March 2012.
[22] Hikmat N. Daghestani and Billy W. Day, “Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors”, Sensors, 10, P.P. 9630-9646, 2010.
[23] Lukosz, W., “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing”, Biosensor Bioelectron, 6, 215-225, 1991.
[24] Mohammed Zourob, et al., “Optical Leaky Waveguide Sensor for Detection of Bacteria with Ultrasound Attractor Force”, Anal. Chem. 77, P.P. 6163-6168, 2005.
[25] Tyson L. Lowder et al., “Polarization analysis of surface-relief D-fiber Bragg Gratings”, APPLIED OPTICS, Vol. 46, No. 13, P.P. 2387-2393, 1 May 2007
[26] Wei Liang, et al., “Highly sensitive fiber Bragg grating refractive index sensors”, APPLIED PHYSICS LETTERS 86, P.P. 151121-1- 151122-3, 2005.
[27] Limin Tong, et al., “Subwavelength-diameter silica wires for low-loss optical wave guiding”, NATURE, VOL 426, 18, 25 DECEMBER 2003.
[28] Hidehisa Tazawa et al., “Fiber-optic coupler based refractive index sensor and its application to biosensing”, APPLIED PHYSICS LETTERS 91, 113901, 2007.
[29] Xingwei Wang, et al., “Label-free DNA sequence detection using oligonucleotide functionalized optical fiber”, APPLIED PHYSICS LETTERS, 89, 163901, 2006.
[30] S. Surdo, et al., “Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis”, Lab Chip, 12, P.P. 4403–4415, 2012.
[31] N.A. Mortensen, S. Xiao, J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications”, Microfluid. Nanofluid.4, P.P. 117-127, 2008.
[32] L. Rindorf, O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating”, Opt. Lett. 33, P.P. 563-565, 2008.
[33] Mindy Lee, et al., “Two-dimensional silicon photonic crystal based biosensing platform for protein detection”, OPTICS EXPRESS, Vol. 15, No. 8 , P.P. 4530-4535, 16 April 2007.
[34] Nina Skivesen, et al., “Photonic-crystal waveguide biosensor”, OPTICS EXPRESS, Vol. 15, No. 6, P.P. 3169-3176, 19 March 2007.
[35] Karolina Mile?ko, et al., “Photonic crystal fiber tip interferometer for refractive index sensing”, OPTICS LETTERS, Vol. 37, No. 8, P.P. 1373-1375, April 15, 2012.
[36] Cooper, M.A. “Non-optical screening platforms: the next wave in label-free screening?”, Drug Discov. Today. 11(23/24), P.P. 1068-1074, 2006.
[37] Gauglitz, G. and Proll, G. “Strategies for label-free optical detection”, Adv. Biochem. Engin. Biotechnol. 109, P.P. 395-432, 2008.
[38] Regis Mejard, et al., “Optical biosensing for label-free cellular studies”, Trends in Analytical Chemistry 53, P.P. 178–186, 2014.
[39] Shawn O’Malley, “RECENT ADVANCES IN LABEL-FREE BIOSENSORS APPLICATIONS IN PROTEIN BIOSYNTHESIS AND HTS SCREENING”, Nova Science Publishers, Inc., ISBN 978-1-60692-156-2.
[40] Matthew A. Cooper, “OPTICAL BIOSENSORS IN DRUG DISCOVERY”, NATURE REVIEWS, DRUG DISCOVERY, VOLUME 1, JULY, 2002.
[41] Cooper, M. A. “Binding of vancomycin group antibiotics to D-alanine and D-lactate presenting self-assembled monolayers”, Bioorg. Med. Chem. 8, P.P. 2609–2616, 2000.
[42] Mrksich, M., Grunwell, J. R. & Whitesides, G. M., “Specific adsorption of carbonic anhydrase to self-assembled monolayers of alkanethiolates that present benzenesulfonamide groups on gold”, J. Am. Chem. Soc. 117, P.P. 12009–12010, 1995.
[43] Lofas, S. & Johnsson, B. “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands”, J. Chem. Soc. Chem. Commun. P.P. 1526–1528, 1990.
[44] Robinson, J. C., Kerjan, P. & Mirande, M. Macromolecular, “Assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein–protein interactions and mechanism of complex assembly”, J. Mol. Biol. 304, P.P. 983–994, 2000.
[45] Fitz, L., Cook, S., Nickbarg, E., Wang, J. H. & Wood, C. R. “Accelerating ligand indentification”, BIAjournal 2, P.P. 23–25, 1998.
[46] Natsume, T. et al. “Combination of biomolecular interaction analysis and mass spectrometric amino acid sequencing”, Anal. Chem. 72, P.P. 4193–4198, 2000.
[47] Williams, C. & Addona, T. A. “The integration of SPR biosensors with mass spectrometry: possible applications for proteome analysis”, Trends Biotechnol. 18, P.P. 45–48, 2000.
[48] Karlsson, R. & Falt, A. “Experimental design for the kinetic analysis of protein–protein interactions with surface plasmon resonance biosensors”, J. Immunol. Methods 200, P.P. 121–133, 1997.
[49] Roden, L. D. & Myszka, D. G. “Global analysis of a macromolecular interaction — myoglobin and anti?myoglobin antibody”, Biochem. Biophys. Res. Commun. 225, P.P. 1073–1077, 1996.
[50] N.J. Tao, S. Boussaad, W.L. Huang, R.A. Arechabaleta, J. D’Agnese, “High resolution surface plasmon resonance spectroscopy”, Rev. Sci. Instrum. 70, P.P. 4656-4660, 1999.
[51] R. Slav’?k, J. Homola, J. Cˇ tyroky’, “Single-mode optical ?ber surface plasmon resonance sensor”, Sens. Actuators B Chem. 54 P.P. 74-79, 1999.
[52] D. Monz’on-Hern’andez, J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical ?ber sensor”, Sens. Actuators B Chem. 115, P.P. 227-231, 2006.
[53] A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, K. Suzuki, “Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes”, Sens. Actuators B Chem. 106, P.P. 383-387, 2005.
[54] F.C. Chien, C.Y. Lin, J.N. Yih, K.L. Lee, C.W. Chang, P.K. Wei, C.C. Sun, S.J. Chen, “Coupled waveguide–surface plasmon resonance biosensor with subwavelength grating”, Biosens. Bioelectron. 22, P.P. 2737, 2007.
[55] R.G. Heideman, P.V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system”, Sens. Actuators B Chem. 61, P.P.100, 1999.
[56] Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, Y. He, “Oscillating wave sensor based on the Goos–Hanchen effect”, Appl. Phys. Lett. 92, P.P. 061117, 2008.
[57] C.-Y. Chao, W. Fung, L.J. Guo, “Design and Optimization of Microring Resonators in Biochemical Sensing Applications”, IEEE J. Sel. Top. Quantum Electron. 12, P.P. 134, 2006.
[58] A. Yalcin, K.C. Popat, J.C. Aldridge, et al., “Optical Sensing of Biomolecules Using Microring Resonators”, IEEE J. Sel. Top. Quantum Electron. 12, P.P. 148, 2006.
[59] C.A. Barrios, K.B. Gylfason, et al. “Slot-waveguide biochemical sensor”, Opt. Lett. 32, P.P. 3080-3082, 2007.
[60] F. Xu, P. Horak, G. Brambilla, “Optical microfiber coil resonator refractometric sensor: erratum”, Opt. Express 15, P.P. 9385, 2007.
[61] B. Cunningham, P. Li, B. Lin, J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique”, Sens. Actuators B Chem. 81, P.P. 316-328, 2002.
[62] P.Y. Li, B. Lin, J. Gerstenmaier, B.T. Cunningham, “A new method for label-free imaging of biomolecular interactions”, Sens. Actuators B Chem. 99, P.P. 6-13, 2004.
[63] Brian T. Cunningham. “Label-free assays on the BIND system”, Journal of Biomolecule Screening Vol. 9, 481–490, 2004.
[64] Leo L. Chan, Brian T. Cunningham. “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library”. Sensors and Actuators B. 132, 418–425, 2008.
[65] Leo L. Chan, Brian T. Cunningham. “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library”. Sensors and Actuators B. 132, 418–425, 2008.
[66] Dorothee Braband, Uwe Geier, “Bio-resource evaluation within agri-environmental assessment tools in different European countries”, Agriculture, Ecosystems and Environment, 98, 423–434, 2003.
[67] Ian D. Bloch, Leo L. Chan, Brian T. Cunningham. Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sensors and Actuators B, 120, P.P.187–193, 2006.
[68] Haipeng Yang, Yongfa Zhu, “A high performance glucose biosensor enhanced via man-sized SiO2”, Analytica Chemical Acta. 554, P.P. 92–97, 2005.
[69] Martin Foldyna, Razvigor Ossikovski, “Effective medium approximation of anisotropic Lamellar nanogratings based on Fourier factorization”, OPTICS EXPRESS. 14, P.P. 3114-3122, 2006.
[70] Przemek J. Bock, Pavel Cheben, “Sub-wavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide”, OPTICS EXPRESS. 18, P.P. 20251-20262, 2010.
[71] T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification”, APPLIED OPTICS, 20, P.P. 3271-3273, 1981.
[72] Philippe Lalanne, Jean Paul Hugonin, and Pierre Chavel, “Optical Properties of Deep Lamellar Gratings: A Coupled Bloch-Mode Insight”, JOURNAL OF LIGHTWAVE TECHNOLOGY, 24, P.P. 2442-2449, 2006.
[73] John M. Jarem, Partha P. Banerjee, “Computational Methods for Electromagnetic and Optical Systems”, Marcel Dekker, Inc. Chapter 3, P.P. 101-105, 2000.
[74] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction”, Journal of Optical Society of America, 71, P.P. 811-818, 1981.
[75] M. G. Moharam, Eric B. Grann, and Drew A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings” Optical Society of America A, Vol. 12, P.P. 1068-1076, 1995.
[76] M. G. Moharam, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach”, Optical Society of America. A. 12, P.P. 1077-1086, 1995.
[77] Amnon Yariv and Pochi Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation”, John Wiley & Sons, 1984.
[78] Amnon Yariv and Pochi Yeh, “Photonics: Optical Electronics in Modern Communications”, SIXTH EDITION, Chapter 3, OXFORD UNIVERSITY PRESS, 2007.
[79 ] Amnon Yariv and Pochi Yeh, “Photonics: Optical Electronics in Modern Communications”, Sixth Edition, Chapter 3, OXFORD UNIVERSITY PRESS, 2007.
[80] Amnon Yariv and Pochi Yeh, “Photonics: Optical Electronics in Modern Communications”, Sixth Edition, Chapter 12, P.P. 541, 2007.
[81] Amnon Yariv and Pochi Yeh, “Photonics: Optical Electronics in Modern Communications”, Sixth Edition, Chapter 12, P.P. 542, 2007.
[82] S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters”, APPLIED OPTICS, Vol. 32, No. 14, P.P. 2606-2613, 10 May, 1993.
[83] David Rosenblatt, Avner Sharon, Asher A. Friesem, “Resonant Grating Waveguide Structures”, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 11, P.P. 2038-2059, NOVEMBER, 1997.
[84] A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant gratingwaveguide structures for visible and near-infrared radiation”, J. Opt. Soc. Am. A, Vol. 14, No. 11, P.P. 2985-2993, November, 1997.
[85] F Lemarchand, A Sentenac, E Cambril and H Giovannini Laboratoire, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters”, J. Opt. A: Pure Appl. Opt. 1, P.P. 545–551, 1999.
[86] Shuzhang Zhang and Theodor Tamir, “Rigorous theory of grating-assisted couplers”, J. Opt. Soc. Am. A Vol. 13, No. 12, P.P.2403-2413, December, 1996.
[87] Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications”, OPTICS EXPRESS, Vol. 12, No 23, P.P. 5661-5674, 15 November, 2004.
[88] R. Magnusson and Y. Ding, “Resonant leaky-mode photonic lattices with engineered spectra and device applications”, Proc. of SPIE Vol. 5931, P.P. 593101-1, 2005.
[89] THOMAS K. GAYLORD, M. G. MOHARAM, “Analysis and Applications of Optical Diffraction by Gratings”, PROCEEDINGS OF THE IEEE. VOL. 73. NO.5, P.P. 894-935, MAY, 1985.
[90] S. S. Wang, R. Magnusson, J. S. Bagby and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings”, J. Opt. Soc. Am. A, Vol. 7, No. 8, P.P.1470-1474, August, 1990.
[91] Qi Wang, Dawei Zhang, Huiyin Yang, Chunxian Tao, Yuanshen Huang, Songlin Zhuang and Ting Mei, “Sensitivity of a Label-Free Guided-Mode Resonant Optical Biosensor with Different Modes”, Sensors, 12, P.P.9791-9799, 2012.
[92] Shin, D., Tibuleac, S., Maldonado, T.A., Magnusson, R. “Thin-film optical filters with diffractive elements and waveguides”, Opt. Eng, 37, P.P.2634–2646, 1998.
[93] Jia, K., Zhang, D., Ma, J., “Sensitivity of guided mode resonance filter-based biosensor in visible and near infrared ranges”, Sens. Actuators B Chem., 156, P.P.194–197, 2011.
[94] Bhag Singh Guru and Hiiseyin R. Hiziroglu, “Electromagnetic Field Theory Fundamentals”, CAMBRIDGE UNIVERSITY PRESS, ISBN-IO 0-521-83016-8, SECOND EDITION, 2004.
[95] Richard L. Burden and J. Douglas Faires, “Numerical Analysis”, Ninth Edition, Brooks and Cole, Cengage Learning, Chapter 4, P.P.174-182, 2011.
[96] Brian T. Cunningham. “Label-free assays on the BIND system”, Journal of Biomolecule Screening Vol. 9, 481–490(2004).
[97] Leo L. Chan, Brian T. Cunningham. “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library”. Sensors and Actuators B. 132, P.P. 418–425(2008).
[98] Leo L. Chan, Brian T. Cunningham. “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library”. Sensors and Actuators B. 132, P.P. 418–425, 2008.
[99] Dorothee Braband, Uwe Geier, “Bio-resource evaluation within agri-environmental assessment tools in different European countries”, Agriculture, Ecosystems and Environment, 98, P.P. 423–434, 2003.
[100] Ian D. Bloch, Leo L. Chan, Brian T. Cunningham. Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sensors and Actuators B, 120, P.P. 187–193, 2006.
[101] Haipeng Yang, Yongfa Zhu, “A high performance glucose biosensor enhanced via man-sized SiO2”, Analytica Chemical Acta. 554, P.P. 92–97, 2005.
[102] Martin Foldyna, Razvigor Ossikovski, “Effective medium approximation of anisotropic Lamellar nanogratings based on Fourier factorization”, OPTICS EXPRESS. 14, P.P. 3114-3122, 2006.
[103] Przemek J. Bock, Pavel Cheben, “Sub-wavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide”, OPTICS EXPRESS. 18, P.P. 20251-20262, 2010.
[104] T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification”, APPLIED OPTICS, 20, P.P. 3271-3273, 1981.
[105] Philippe Lalanne, Jean Paul Hugonin, and Pierre Chavel, “Optical Properties of Deep Lamellar Gratings: A Coupled Bloch-Mode Insight”, JOURNAL OF LIGHTWAVE TECHNOLOGY, 24, P.P. 2442-2449, 2006.
[106] John M. Jarem, Partha P. Banerjee, “Computational Methods for Electromagnetic and Optical Systems”, Marcel Dekker, Inc. Chapter 3, P.P. 101-105, 2000.
[107] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction”, Journal of Optical Society of America, 71, P.P. 811-818, 1981.
[108] M. G. Moharam, Eric B. Grann, and Drew A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings” Optical Society of America A, Vol. 12, P.P. 1068-1076, 1995.
[109] M. G. Moharam, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach”, Optical Society of America. A. 12, P.P. 1077-1086, 1995.
[110] Philippe Lalanne, Jean Paul Hugonin, and Pierre Chavel, “Optical Properties of Deep Lamellar Gratings: A Coupled Bloch-Mode Insight”, JOURNAL OF LIGHTWAVE TECHNOLOGY, 24, P.P. 2442-2449, 2006.
[111] Philippe Lalanne, et al., “Optical Properties of Deep Lamellar Gratings: A Coupled Bloch-Mode Insight”, JOURNAL OF LIGHTWAVE TECHNOLOGY. 24, P.P. 2442-2449, 2006.
[112] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction”, Journal of Optical Society of America, 71, P.P. 811-818, 1981.
[113] M. G. Moharam, Eric B. Grann, and Drew A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings”, Journal of Optical Society of America A, 12, P.P. 1068-1076, 1995.
[114] M. G. Moharam, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach”, Optical Society of America A, 12, P.P. 1077-1086, 1995.
[115] Philippe Lalanne, Jean Paul Hugonin, and Pierre Chavel, “Optical Properties of Deep Lamellar Gratings: A Coupled Bloch-Mode Insight”, JOURNAL OF LIGHTWAVE TECHNOLOGY, 24, P.P. 2442-2449, 2006.
[116] Haipeng Yang, Yongfa Zhu, “A high performance glucose biosensor enhanced via nanosized SiO2”, Analytica Chimica Acta, 554, P.P. 92–97, 2005.
[117] Martin Foldyna, Razvigor Ossikovski, “Effective medium approximation of anisotropic lamellar nanogratings based on Fourier factorization”, OPTICS EXPRESS, 14, P.P. 3114-3122, 2006.
[118] Przemek J. Bock, Pavel Cheben, “Sub-wavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide”, OPTICS EXPRESS, 18, P.P. 20251-20262, 2010.
[119] Jian-Jun Shu, Yuguang Sun, “Developing classification indices for Chinese pulse diagnosis”, Complementary Therapies in Medicine, 15, 190-198, (2007).
[120] Huiyan Wang, Yiyu Cheng, “A quantitative system for pulse diagnosis in Traditional Chinese medicine”, Proceeding of the 2005 IEEE Engineering in Medicine and biology 27th Annual Conference Shanghai, China, Spetember 1-4(2005).
[121] Shinobu Tanoka, Masamichi Nogawa, Takehiro Yamakoshi, Ken-ichi Yamakoshi, “Accuracy assessment of a noninvasive device for monitoring beat-by-beat blood pressure in the radial artery using the volume-compensation method”, IEEE Transactions on Biomedical Engineering, 54, P.P. 1892-1895, 2007.
[122] Bharat S. Shete, A. B. Kakade, “Pulse diagnosis based automated diagnostic system”, IJCER, 2, P.P. 375-378, 2012.
[123] Y. Yoon, M. Lee, K. Soh, “Pulse type classification by varying contact pressure”, IEEE engineering in Medicine and biology Magazine, 19, P.P. 106-110, 2000.
[124] Y.Y. Lin Wang, J.I. Sheu, W.K. Wang, Alteration of Pulse by Chinese Herb Medicine. Am. J. Chin. Med. 20, P.P. 181-190, 1992.
[125] Jian-Jun Shu, Yuguang Sun, “Developing classification indices for Chinese pulse diagnosis”, Complementary Therapies in Medicine, 15, P.P. 190-198, 2007.
[126] W.A. LU, C.H.Cheng, Y.Y.Lin Wang, W.K. Wang, “Pulse Spectrum Analysis of hospital patients with possible liver problems”, Am. J. chin. Med., 24(3-4), P.P. 315-320, 1996.
[127] Huiyan Wang, Yiyu Cheng, “A quantitative system for pulse diagnosis in Traditional Chinese medicine”, Proceeding of the 2005 IEEE Engineering in Medicine and biology 27th Annual Conference Shanghai, China, September 1-4, 2005.
[128] Shinobu Tanoka, Masamichi Nogawa, Takehiro Yamakoshi, Ken-ichi Yamakoshi, “Accuracy assessment of a noninvasive device for monitoring beat-by-beat blood pressure in the radial artery using the volume-compensation method”, IEEE Transactions on Biomedical Engineering, 54, P.P. 1892-1895, 2007.
[129] Y. Yoon, M. Lee, K. Soh, “Pulse type classification by varying contact pressure”, IEEE engineering in Medicine and biology Magazine, 19, P.P. 106-110, 2000.
[130] Y.Y. Lin Wang, J.I. Sheu, W.K. Wang, “Alteration of Pulse by Chinese Herb Medicine”. Am. J. Chin. Med. 20, P.P. 181-190, 1992.
[131] W.K. Wang, T.L. Hsu, Y. Chiang, Y.Y. Lin Wang, “Study on the Pulse Spectrum Change before Deep Sleep and Its Possible Relation to EEG”, Chin. J. Med. and Biol. Engineering, 12, P.P. 107-115, 1992.
指導教授 張榮森(Rong-Seng Chang) 審核日期 2014-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明