參考文獻 |
[1] Anne K Starace, Baopeng Cao, Oscar H Judd, Indrani Bhattacharyya, and Martin F Jarrold. Melting of size-selected aluminum nanoclusters with 84-128 atoms.
The Journal of chemical physics, 132(3):034302, 2010.
[2] Martin Schmidt and Hellmut Haberland. Phase transitions in clusters. C R Physique, 3(3):327340, 2002.
[3] Francesca Baletto and Riccardo Ferrando. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Reviews of Modern Physics, 77(1):371423, 2005.
[4] Y J Lee, J Y Maeng, E K Lee, B Kim, S Kim, and K K Han. Melting behaviors of icosahedral metal clusters studied by Monte Carlo simulations. Journal of Computational Chemistry, 21(5):380387, 2000.
[5] Ali Sebetci and Ziya B Guvenc. Molecular Dynamics Simulation of the Melting Behaviours of 12-, 13-, 14-Atom Icosahedral Platinum Clusters. Modelling and Simulation in Materials Science and Engineering, 12:1131, 2004.
[6] Murat Atis, Huseyin Akta3, and Ziya B Guvenc. Structures and melting of Ag N (N=7,12-14) clusters. Modelling and Simulation in Materials Science and Engineering, 13(8):14111432, December 2005.
[7] E K Yildirim, M Atis, and Z B Guvenc. Molecular dynamics simulation of melting behaviour of small gold clusters: Au N (N=12-14). Physica Scripta, 75(1):111
118, January 2007.
[8] Hong-Hai Liu, En-Yong Jiang, Hai-Li Bai, Ping Wu, Zhi-Qing Li, and Chang Q
Sun. Dislocation stimulus dependence of atomic collective vibration in an icosahe-
dral cluster. Journal of Nanoscience and Nanotechnology, 9(8):46684672, 2009.
[9] Florent Calvo. Solid-solution precursor to melting in onion-ring Pd-Pt nanoclusters: a case of second-order-like phase change? Faraday Discussions, 138:7588; discussion 119135, 433434, 2008.
[10] Charles Cleveland, W Luedtke, and Uzi Landman. Melting of Gold Clusters: Icosahedral Precursors. Physical Review Letters, 81(10):20362039, 1998.
[11] D Schebarchov and S C Hendy. Transition from Icosahedral to Decahedral Structure in a Coexisting Solid-Liquid Nickel Cluster. Physical Review Letters, 95(11):7, 2005.
[12] Z Kuntova, G Rossi, and R Ferrando. Melting of core-shell Ag-Ni and Ag-Co nanoclusters studied via molecular dynamics simulations. Physical Review B, 77(20):18, 2008.
[13] Yanting Wang, S Teitel, and Christoph Dellago. Melting and Equilibrium Shape of Icosahedral Gold Nanoparticles. Chemical Physics Letters, 394(4-6):4, 2003.
[14] Jerry O Ebalunode and Weifan Zheng. Molecular shape technologies in drug discovery: methods and applications. Current Topics in Medicinal Chemistry, 10(6):669679, 2010.
[15] Pedro J Ballester, Isaac Westwood, Nicola Laurieri, Edith Sim, and W Graham Richards. Prospective virtual screening with Ultrafast Shape Recognition: the identication of novel inhibitors of arylamine N-acetyltransferases. Journal of the
Royal Society, Interface / the Royal Society, 7(43):33542, February 2010.
[16] Edward O Cannon, Florian Nigsch, and John B O Mitchell. A novel hybrid ultrafast shape descriptor method for use in virtual screening. Chemistry Central journal, 2:3, January 2008.
[17] S K Lai, W D Lin, K L Wu, W H Li, and K C Lee. Specic heat and Lindemann-like parameter of metallic clusters: mono- and polyvalent metals. The Journal of chemical physics, 121(3):148798, July 2004.
[18] P J Hsu and S K Lai. Structures of bimetallic clusters. The Journal of chemical physics, 124(4):044711, 2006.
[19] F. A. Lindemann. The calculation of molecular Eigen-frequencies. Phys. Z., 11:609, 1910.
[20] Thomas L. Beck, Julius Jellinek, and R. Stephen Berry. Rare gas clusters: Solids, liquids, slush, and magic numbers. The Journal of Chemical Physics, 87(1):545, 1987.
[21] Young Joo Lee, Eok-Kyun Lee, Sehun Kim, and R. Nieminen. Eect of Potential Energy Distribution on the Melting of Clusters. Physical Review Letters, 86(6):9991002, February 2001.
[22] Gary A Breaux, Colleen M Neal, Baopeng Cao, and Martin F Jarrold. Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. Physical Review Letters, 94(17):173401, 2005.
163[23] Eva G Noya, Jonathan P K Doye, and Florent Calvo. Melting of aluminium clusters. 2006.
[24] Ping-Han Tang, Ten-Ming Wu, Tsung-Wen Yen, S K Lai, and P J Hsu. Comparative study of cluster Ag(17)Cu(2) by instantaneous normal mode analysis and by isothermal Brownian-type molecular dynamics simulation. The Journal of chemical physics, 135(9):094302, 2011.
[25] S.K. Lai, Yu-Ting Lin, P.J. Hsu, and S.a. Cheong. Dynamical study of metallic clusters using the statistical method of time series clustering. Computer Physics Communications, 182(4):10131026, April 2011.
[26] Douglas Poland. Intermediates in the melting transitions of aluminum nanoclusters. The Journal of chemical physics, 126(5):054507, 2007.
[27] Daojian Cheng, Xin Liu, Dapeng Cao, WenchuanWang, and Shiping Huang. Surface segregation of Ag-Cu-Au trimetallic clusters. Nanotechnology, 18(47):475702,
2007.
[28] Giovanni Barcaro, Alessandro Fortunelli, Giulia Rossi, Florin Nita, and Riccardo Ferrando. Electronic and structural shell closure in AgCu and AuCu nanoclusters. The journal of physical chemistry. B, 110(46):2319723203, 2006.
[29] Yi Rao, Yimin Lei, Xiangyuan Cui, Zongwen Liu, and Fuyi Chen. Optical and magnetic properties of Cu-doped 13-atom Ag nanoclusters. Journal of Alloys and Compounds, 565(0):5055, 2013.
[30] G Rossi, A Rapallo, C Mottet, A Fortunelli, F Baletto, and R Ferrando. Magic polyicosahedral core-shell clusters. Physical Review Letters, 93(10):105503, 2004.
[31] F Baletto, C Mottet, and R Ferrando. Time evolution of Ag-Cu and Ag-Pd core-shell nanoclusters. The European Physical Journal D Atomic Molecular and Optical Physics, 24(1-3):233236, 2003.
[32] Giovanni Barcaro and Alessandro Fortunelli. A study of bimetallic Cu-Ag, Au-Ag and Pd-Ag clusters adsorbed on a double-vacancy-defected MgO(100) terrace. Faraday discussions, 138:3747; discussion 119135, 433434, 2008.
[33] C Mottet, G Rossi, F Baletto, and R Ferrando. Single impurity effect on the melting of nanoclusters. Physical review letters, 95(3):035501, 2005.
[34] Perla B. Balbuena, Julibeth M. Martinez De La Hoz, and Rafael Callejas Tovar. Size eect on the stability of Cu-Ag nanoalloys. Molecular Simulation, 35(10-11):785794, 2009.
[35] Suk Jun Kim, Eric a. Stach, and Carol a. Handwerker. Fabrication of conductive interconnects by Ag migration in Cu-Ag core-shell nanoparticles. Applied Physics
Letters, 96(14):144101, 2010.
[36] P J Hsu, J S Luo, S K Lai, J F Wax, and J-L Bretonnet. Melting scenario in metallic clusters. The Journal of chemical physics, 129(19):194302, November
2008.
[37] Ph. Dugourd, R. R. Hudgins, D. E. Clemmer, and M. F. Jarrold. High-resolution ion mobility measurements. Review of Scientic Instruments, 68(2):1122, 1997.
[38] Alexandre A. Shvartsburg, Robert R. Hudgins, Philippe Dugourd, and Martin F. Jarrold. Structural Elucidation of Fullerene Dimers by High-Resolution Ion Mobility Measurements and Trajectory Calculation Simulations. The Journal of Physical Chemistry A, 101(9):16841688, February 1997.
[39] David E Clemmer and Martin F Jarrold. SPECIAL FEATURE : Ion Mobility Measurements and their Applications to Clusters and Biomolecules. J. Mass Spectrosc., 32(April):577592, 1997.
[40] A A Shvartsburg and M F Jarrold. Solid clusters above the bulk melting point. Physical Review Letters, 85(12):25302, 2000.
[41] M F Mesleh, J M Hunter, A A Shvartsburg, G C Schatz, and M F Jarrold. Structural Information from Ion Mobility Measurements: Eects of the Long-Range Potential. The Journal of Physical Chemistry, 100(40):1608216086, 1996.
[42] Robert R Hudgins, Mark A Ratner, and Martin F Jarrold. Design of helices that are stable in vacuo. J. Am. Chem. Soc., 120(49):1297412975, 1998.
[43] Thomas Wyttenbach, John E Bushnell, and Michael T Bowers. Salt Bridge Structures in the Absence of Solvent? The Case for the Oligoglycines. J. Am. Chem. Soc., 120(20):50985103, 1998.
[44] F A Fernandez-Lima, H Wei, Y Q Gao, and D H Russell. On the structure elucidation using ion mobility spectrometry and molecular dynamics. The journal of physical chemistry. A, 113(29):82218234, 2009.
[45] Fabien Chirot, Florent Calvo, Florian Albrieux, Jerome Lemoine, Yury O. Tsybin, and Philippe Dugourd. Statistical Analysis of Ion Mobility Spectrometry. I. Unbiased and Guided Replica-Exchange Molecular Dynamics. Journal of The American Society for Mass Spectrometry, 23(2):386396, 2012.
[46] Florent Calvo, Fabien Chirot, Florian Albrieux, Jerome Lemoine, Yury O. Tsybin, Pascal Pernot, and Philippe Dugourd. Statistical Analysis of Ion Mobility
Spectrometry. II. Adaptively Biased Methods and Shape Correlations. Journal of The American Society for Mass Spectrometry, 23(7):12791288, 2012.
[47] F. Calvo. Phenomenological model for the statistical study of charged metal clusters. Physical Review B, 60(23):1560115604, December 1999.
165[48] F Calvo and F Spiegelmann. Mechanisms of phase transitions in sodium clusters: From molecular to bulk behavior. The Journal of Chemical Physics, 112(6):2888-2908, 2000.
[49] J. P. Neirotti, F. Calvo, David L. Freeman, and J. D. Doll. Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble. The Journal of Chemical Physics, 112(23):10340, 2000.
[50] F. Calvo, J. P. Neirotti, David L. Freeman, and J. D. Doll. Phase changes in 38-atom Lennard-Jones clusters. II. A parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical ensembles. The Journal of Chemical Physics, 112(23):10350, 2000.
[51] E. Marinari and G. Parisi. Simulated Tempering - A New Monte-carlo Scheme.
Europhysics Letters, 19(6):451458, 1992.
[52] Robert H. Swendsen and Jian-Sheng Wang. Replica Monte Carlo Simulation of Spin-Glasses. Physical Review Letters, 57(21):26072609, 1986.
[53] Yuji Sugita and Yuko Okamoto. Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 314(November):141151, 1999.
[54] Manuel Athenes and Florent Calvo. Multiple-replica exchange with information retrieval. Chemphyschem : a European journal of chemical physics and physical chemistry, 9(16):23322339, 2008.
[55] Raju Gupta. Lattice relaxation at a metal surface. Physical Review B, 23(12):62656270, 1981.
[56] C. Mottet, G. Treglia, and B. Legrand. Structures of a Ag monolayer deposited on Cu (111), Cu (100), and Cu (110) substrates: An extended tight-binding quenched-molecular-dynamics study. Physical Review B, 46(24):16018, 1992.
[57] A Bulgac and D Kusnezov. Canonical ensemble averages from pseudomicrocanonical dynamics. Physical Review A, 42(8):50455048, 1990.
[58] Shuichi Nose. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2):255268, 1984.
[59] William G Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3):16951697, 1985.
[60] Aurel Bulgac and Dimitri Kusnezov. Thermal properties of Na8 microclusters. Physical review letters, 68(9):13351338, 1992.
[61] Nengjiu Ju and Bulgac Aurel. Finite-temperature properties of sodium clusters. Physical Review B, 48(4):2721, 1993.
166[62] Nikta Fakhri, Frederick C MacKintosh, Brahim Lounis, Laurent Cognet, and Matteo Pasquali. Brownian motion of sti laments in a crowded environment. Science (New York, N.Y.), 330(6012):18047, December 2010.
[63] Aneta T Petkova, Yoshitaka Ishii, John J Balbach, Oleg N Antzutkin, Richard D Leapman, Frank Delaglio, and Robert Tycko. A structural model for Alzheimer′s beta-amyloid brils based on experimental constraints from solid state NMR.
Proc Natl Acad Sci USA, 99(26):1674216747, 2002.
[64] Aneta T Petkova, Richard D Leapman, Zhihong Guo, Wai-Ming Yau, Mark P Mattson, and Robert Tycko. Self-propagating, molecular-level polymorphism in Alzheimer′s beta-amyloid brils. Science (New York, N.Y.), 307(5707):2625,
January 2005.
[65] Christopher P Jaroniec, Cait E MacPhee, Nathan S Astrof, Christopher M Dobson, and Robert G Grin. Molecular conformation of a peptide fragment of transthyretin in an amyloid bril. Proceedings of the National Academy of Sciences of the United States of America, 99(26):1674816753, 2002.
[66] Christopher P Jaroniec, Cait E Macphee, Vikram S Bajaj, Michael T Mcmahon, Christopher M Dobson, and Robert G Grin. High-resolution molecular structure of a peptide in an amyloid bril determined by magic angle spinning NMR spectroscopy. Proceedings of the National Academy of Sciences of the United
States of America, 101(3):7116, 2004.
[67] Emanuele Paci, Jorg Gsponer, Xavier Salvatella, and Michele Vendruscolo. Molecular dynamics studies of the process of amyloid aggregation of peptide fragments of transthyretin. Journal of Molecular Biology, 340(3):555569, 2004.
[68] J A Jarvis, A Kirkpatrick, and D J Craik. 1H NMR analysis of bril-forming peptide fragments of transthyretin. International journal of peptide and protein research, 44(4):38898, October 1994.
[69] Christopher M Dobson. Principles of protein folding, misfolding and aggregation. Seminars in cell developmental biology, 15(1):316, 2004.
[70] Da-Wei Li, Li Han, and Shuanghong Huo. Structural and pathway complexity of beta-strand reorganization within aggregates of human transthyretin(105-115) peptide. The journal of physical chemistry. B, 111(19):54255433, 2007.
[71] G La Penna, Paola Carbone, Rita Carpentiero, Arnaldo Rapallo, and Angelo Perico. Polyisoprene local dynamics in solution: Comparison between molecular dynamics simulations and high order diusion theory. The Journal of Chemical Physics, 114(4):1876, 2001.
167[72] Arnaldo Rapallo, Giulia Rossi, Riccardo Ferrando, Alessandro Fortunelli, Benjamin C. Curley, Lesley D. Lloyd, Gary M. Tarbuck, and Roy L. Johnston. Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems. The Journal of Chemical Physics, 122(19):194308, 2005.
[73] Pedro J Ballester and W Graham Richards. Ultrafast shape recognition to search compound databases for similar molecular shapes. Journal of Computational Chemistry, 28(10):17111723, 2007.
[74] Roberto Gaspari and Arnaldo Rapallo. Formulation of improved basis sets for the study of polymer dynamics through diusion theory methods. The Journal of chemical physics, 128(24):244109, 2008.
[75] W L Jorgensen and J Tirado-Rives. The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. Journal of the American Chemical Society, 110(6):16571666, 1988.
[76] George A Kaminski, Richard A Friesner, Julian Tirado-Rives, and William L Jorgensen. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. The Journal of Physical Chemistry B, 105(28):64746487, 2001.
[77] Michael W Mahoney and William L Jorgensen. Diusion constant of the TIP5P model of liquid water. The Journal of Chemical Physics, 114(1):363, 2001.
[78] M Parrinello and A Rahman. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12):71827190, 1981.
[79] David Van Der Spoel and Erik Lindahl. Brute-Force Molecular Dynamics Simulations of Villin Headpiece: Comparison with NMR Parameters. The Journal of Physical Chemistry B, 107(40):1117811187, 2003.
[80] Berk Hess and Nico F A Van Der Vegt. Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force elds and water models. The Journal of Physical Chemistry B, 110(35):1761617626, 2006.
[81] A Glattli, X Daura, andWilfred F Van Gunsteren. A novel approach for designing simple point charge models for liquid water with three interaction sites. Journal of Computational Chemistry, 24(9):10871096, 2003.
[82] Shuichi Nose and M L Klein. Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5):10551076, 1983.
[83] Michael R Sawaya, Shilpa Sambashivan, Rebecca Nelson, Magdalena I Ivanova, Stuart A Sievers, Marcin I Apostol, Michael J Thompson, Melinda Balbirnie, Jed J W Wiltzius, Heather T McFarlane, Anders OMadsen, Christian Riekel, and 168David Eisenberg. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature, 447(7143):453457, 2007.
[84] C Blake and L Serpell. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid bril is a continuous beta-sheet helix. Structure London England 1993, 4(8):989998, 1996.
[85] Filip Meersman, Christopher Dobson, and Karel Heremans. Protein unfolding, amyloid bril formation and congurational energy landscapes under high pressure conditions. Chemical Society reviews, 35(10):908917, 2006.
[86] M Sunde and C C Blake. From the globular to the brous state: protein structure and structural conversion in amyloid formation. Quarterly reviews of biophysics,
31(1):139, 1998.
[87] J W Kelly. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Current Opinion in Structural Biology, 8(1):101 6, 1998.
[88] C M Dobson. The structural basis of protein folding and its links with human disease. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 356(1406):133145, 2001.
[89] Fabrizio Chiti and Christopher M Dobson. Protein Misfolding, Functional Amyloid, and Human Disease. Annual Review of Biochemistry, 75(1):333366, 2006.
[90] Sally L Gras. Amyloid Fibrils: From Disease to Design. New Biomaterial Applications for Self-Assembling Cross- Fibrils. Australian Journal of Chemistry, 60(5):333, 2007.
[91] T P Knowles, A W Fitzpatrick, S Meehan, H R Mott, M Vendruscolo, C M Dobson, and M E Welland. Role of intermolecular forces in dening material properties of protein nanobrils. Science, 318(5858):19001903, 2007.
[92] Senli Guo and Boris B Akhremitchev. Packing density and structural heterogeneity of insulin amyloid brils measured by AFM nanoindentation. Biomacromolecules, 7(5):16301636, 2006.
[93] Thomas Scheibel. Protein bers as performance proteins: new technologies and applications. Current opinion in biotechnology, 16(4):427433, 2005.
[94] Filip Meersman, Raul Quesada Cabrera, Paul F McMillan, and Vladimir Dmitriev. Structural and mechanical properties of TTR105-115 Amyloid brils from compression experiments. Biophysical Journal, 100(1):193197, 2011.
[95] Patrick Mesquida, E Macarena Blanco, and Rachel A McKendry. Patterning amyloid peptide brils by AFM charge writing. Langmuir The Acs Journal Of Surfaces And Colloids, 22(22):90899091, 2006.
169[96] Pedro Bernaola-Galvan, Plamen Ivanov, Luis Nunes Amaral, and H Stanley. Scale Invariance in the Nonstationarity of Human Heart Rate. Physical Review Letters, 87(16):168105, 2001.
[97] J C Wong, H Lian, and S A Cheong. Detecting macroeconomic phases in the Dow Jones Industrial Average time series. Physica aStatistical Mechanics and Its Applications, 388(21):46354645, 2009.
[98] Yiting Zhang, Gladys Hui Ting Lee, Jian Cheng Wong, Jun Liang Kok, Manamohan Prusty, and Siew Ann Cheong. Will the US Economy Recover in 2010? A Minimal Spanning Tree Study. Physica aStatistical Mechanics and Its Applications, 390(11):20202050, 2011.
[99] Siew Ann Cheong, Robert Paulo Fornia, Gladys Lee, Jun Liang Kok, Woei Shyr Yim, Danny Yuan Xu, and Yiting Zhang. The Japanese Economy in Crises: A Time Series Segmentation Study. SSRN Electronic Journal, 2011.
[100] J Lin. Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1):145151, 1991.
[101] Siew-Ann Cheong, Paul Stodghill, David J Schneider, Samuel W Cartinhour, and Christopher R Myers. The Context Sensitivity Problem in Biological Sequence Segmentation. Transactions on Computational Biology and Bioinformatics, page 39, 2009.
[102] Jorg Gsponer, Urs Haberthur, and Amedeo Caisch. The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35. Proceedings of the National Academy of Sciences of the United States of America, 100(9):51549, 2003.
[103] X Chang and K F Freed. Test of Theory for Long Time Dynamics of Floppy Molecules in Solution Using Brownian Dynamics Simulation of Octane. J. Chem. Phys., 99(10):80168030, 1993.
[104] Angelo Perico, Roberto Pratolongo, Karl F. Freed, Richard W. Pastor, and Attila Szabo. Positional time correlation function for one-dimensional systems with barrier crossing: Memory function corrections to the optimized Rouse-Zimm approximation. The Journal of Chemical Physics, 98(1):564, 1993.
[105] Angelo Perico and Roberto Pratolongo. Maximum-Correlation Mode-Coupling Approach to the Smoluchowski Dynamics of Polymers. Macromolecules, 30(19):59585969, 1997.
[106] W H Tang, X Chang, and K F Freed. Theory for Long Time Polymer and Protein dynamics: Basis Functions and Time Correlation Functions. J. Chem. Phys., 103(21):94929501, 1995.
170[107] K S Kostov and K F Freed. Long-time dynamics of Met-enkephalin: comparison of theory with Brownian dynamics simulations. Biophysical journal, 76(1 Pt 1):149163, 1999.
[108] Andrea Giachetti, Giovanni La La Penna, Angelo Perico, and Lucia Banci. Modeling the backbone dynamics of reduced and oxidized solvated rat microsomal cytochrome b5. Biophysical journal, 87(1):498512, 2004.
[109] Min-yi Shen My and Karl F Freed. Long time dynamics of Met-enkephalin: comparison of explicit and implicit solvent models. Biophysical journal, 82(4):1791
1808, 2002.
[110] Min-yi Shen and Karl F. Freed. Long time dynamics of Met-enkephalin: Tests of mode-coupling theory and implicit solvent models. The Journal of Chemical Physics, 118(11):5143, 2003.
[111] Simone Fausti, Giovanni La Penna, Carla Cuniberti, and Angelo Perico. Mode-Coupling Smoluchowski Dynamics of a Double-Stranded DNA Oligomer. Biopolymers, 50(6):613629, 1999.
[112] G La Penna, S Fausti, A Perico, and J A Ferretti. Smoluchowski dynamics of the vnd/NK-2 homeodomain from Drosophila melanogaster: second-order maximum correlation approximation. Biopolymers, 54(2):89103, August 2000.
[113] S Fausti, G La Penna, J Paoletti, D Genest, G Lancelot, and A Perico. Modeling the dynamics of a mutated stem-loop in the SL1 domain of HIV-1Lai genomic RNA by 1H-NOESY spectra. Journal of biomolecular NMR, 20(4):333349, 2001.
[114] P Westermark, K Sletten, B Johansson, and G G Cornwell. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proceedings of the National Academy of Sciences of the United States of America, 87(7):28432845, 1990.
[115] HJC Berendsen, D. van der Spoel, and R. van Drunen. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3):4356, 1995.
[116] M. Parrinello and A. Rahman. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Physical Review Letters, 45(14):11961199, 1980.
[117] RWPastor and M Karplus. Parametrizatlon of the Friction Constant for Stochastic Simulations of Polymers. J. Phys. Chem., 92:26362641, 1988.
[118] Jens Rotne and Stephen Prager. Variational treatment of hydrodynamic interaction in polymers. The Journal of Chemical Physics, 50(11):48314837, 1969.
171[119] Hiromi Yamakawa. Transport Properties of Polymer Chains in Dilute Solution: Hydrodynamic Interaction. J. Chem. Phys., 53(1):436, 1970.
[120] Robert Zwanzig. Theoretical basis for the Rouse-Zimm model in polymer solution dynamics. The Journal of Chemical Physics, 60(7):2717, 1974.
[121] M Karplus and G A Petsko. Molecular dynamics simulations in biology. Nature, 347(6294):631639, 1990.
[122] Martin Karplus and J Andrew McCammon. Molecular dynamics simulations of biomolecules. Nature Structural Biology, 35(6):646652, 2002.
[123] M Karplus and J Kuriyan. Molecular dynamics and protein function. Proceedings of the National Academy of Sciences of the United States of America, 102(19):66796685, 2005.
[124] U H Hansmann and Y Okamoto. New Monte Carlo algorithms for protein folding. Current Opinion in Structural Biology, 9(2):177183, 1999.
[125] R D Taylor, P J Jewsbury, and J W Essex. A review of protein-small molecule docking methods. Journal of computeraided molecular design, 16(3):151166, 2002.
[126] B Rost. Review: protein secondary structure prediction continues to rise. Journal of Structural Biology, 134(2-3):204218, 2001.
[127] Jack Schonbrun, William J Wedemeyer, and David Baker. Protein structure prediction in 2002. Current Opinion in Structural Biology, 12(3):348354, 2002.
[128] C Floudas, H Fung, S Mcallister, M Monnigmann, and R Rajgaria. Advances in protein structure prediction and de novo protein design: A review. Chemical Engineering Science, 61(3):966988, 2006.
[129] Yang Zhang. Progress and challenges in protein structure prediction. Current Opinion in Structural Biology, 18(3):342348, 2008.
[130] J E Shea and C L Brooks. From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annual Review of Physical Chemistry, 52(1):499535, 2001.
[131] Christopher D Snow, Eric J Sorin, Young Min Rhee, and Vijay S Pande. How well can simulation predict protein folding kinetics and thermodynamics? Annual Review of Biophysics and Biomolecular Structure, 34(1):4369, 2005.
[132] Harold A Scheraga, Mey Khalili, and Adam Liwo. Protein-folding dynamics: overview of molecular simulation techniques. Annual Review of Physical Chemistry, 58(1):5783, 2007.
172[133] S B Prusiner. Prion diseases and the BSE crisis. Science, 278(5336):245251, 1997.
[134] R N Rosenberg. The molecular and genetic basis of AD: the end of the beginning: the 2000 Wartenberg lecture. Neurology, 54(11):20452054, 2000.
[135] Dennis J Selkoe and Marcia B Podlisny. Deciphering the genetic basis of Alzheimer′s disease. Annual review of genomics and human genetics, 3:6799, January 2002.
[136] T Foltynie, S Sawcer, C Brayne, and RA Barker. The genetic basis of Parkinson′s disease. Journal of Neurology Neurosurgery Psychiatry, 73(4):363370, 2002.
[137] Matthew James Farrer. Genetics of Parkinson disease: paradigm shifts and future prospects. Nature Reviews Genetics, 7(4):306318, 2006.
[138] J Liu, L A Campos, M Cerminara, X Wang, R Ramanathan, D S English, and V Munoz. Exploring one-state downhill protein folding in single molecules. Proceedings of the National Academy of Sciences, 109(13):38, 2011.
[139] Hoi Sung Chung, Irina V Gopich, Kevin McHale, Troy Cellmer, John M Louis, and William A Eaton. Extracting rate coecients from single-molecule photon trajectories and FRET eciency histograms for a fast-folding protein. The Journal of Physical Chemistry A, 115(16):36423656, 2011.
[140] Shu-qun Liu, Xing-lai Ji, Yan Tao, and De-yong Tan. Protein Folding , Binding and Energy Landscape : A Synthesis. In P Kaumaya, editor, InTech, pages 207252, Croatia, 2012.
[141] J D Bryngelson, J N Onuchic, N D Socci, and P G Wolynes. Funnels, Pathways and the Energy Landscape of Protein Folding: A Synthesis. Proteins, 21(3):53, 1994.
[142] Valerie Daggett and Alan R Fersht. Is there a unifying mechanism for protein folding? Trends in Biochemical Sciences, 28(1):1825, 2003.
[143] Elizabeth R Morris and Mark S Searle. Overview of protein folding mechanisms: experimental and theoretical approaches to probing energy landscapes. Current protocols in protein science editorial board John E Coligan et al , Chapter 28(April):Unit28.2, 2012.
[144] A R Fersht. Nucleation mechanisms in protein folding. Current Opinion in Structural Biology, 7(1):39, 1997.
[145] Alan R Fersht. Transition-state structure as a unifying basis in protein-folding mechanisms: Contact order, chain topology, stability, and the extended nucleus mechanism. Proceedings of the National Academy of Sciences of the United States of America, 97(4):15251529, 2000.
[146] P E Leopold, M Montal, and J N Onuchic. Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proceedings of the National Academy of Sciences of the United States of America, 89(18):87218725, 1992.
[147] David J Wales. The energy landscape as a unifying theme in molecular science. hilosophical Transactions of the Royal Society - Series A: Mathematical, Physical and Engineering Sciences, 363(1827):357375; discussion 375377, 2005.
[148] C M Dobson and M Karplus. The fundamentals of protein folding: bringing together theory and experiment. Current Opinion in Structural Biology, 9(1):92 101, 1999.
[149] Jose Nelson Onuchic and Peter G Wolynes. Theory of protein folding. Current opinion in structural biology, 14(1):705, February 2004.
[150] Stefano Gianni, Christian D Geierhaas, Nicoletta Calosci, Per Jemth, Geerten W Vuister, Carlo Travaglini-Allocatelli, Michele Vendruscolo, and Maurizio Brunori. A PDZ domain recapitulates a unifying mechanism for protein folding. Proceedings of the National Academy of Sciences of the United States of America, 104(1):128133, 2007.
[151] Maurizio Brunori, Stefano Gianni, Rajanish Giri, Angela Morrone, and Carlo Travaglini-Allocatelli. Morphogenesis of a protein: folding pathways and the energy landscape. Biochemical Society Transactions, 40(2):42932, 2012.
[152] Ylva Ivarsson, Carlo Travaglini-Allocatelli, Maurizio Brunori, and Stefano Gianni. Mechanisms of protein folding. European biophysics journal EBJ, 37(6):721728, 2008.
[153] Maksym Tsytlonok and Laura S Itzhaki. The how′s and why′s of protein folding intermediates. Archives of biochemistry and biophysics, 531(1-2):1423, 2013.
[154] K Lindor-Larsen, S Piana, R O Dror, and D E Shaw. How Fast-Folding Proteins Fold. Science, 334(6055):517520, 2011.
[155] Jerey K Weber and Vijay S Pande. Protein folding is mechanistically robust. Biophysical Journal, 102(4):859867, 2012.
[156] Malgorzata Pokrzywa, Ingrid Dacklin, Dan Hultmark, and Erik Lundgren. Misfolded transthyretin causes behavioral changes in a Drosophila model for transthyretin-associated amyloidosis. European Journal of Neuroscience, 26(4):913924, 2007.
[157] Robert E Steward, Roger S Armen, and Valerie Daggett. Dierent disease-causing mutations in transthyretin trigger the same conformational conversion. Protein engineering design selection PEDS, 21(3):187195, 2008.
[158] Mingfeng Yang, Boyan Yordanov, Yaakov Levy, Rafael Bruschweiler, and Shuanghong Huo. The sequence-dependent unfolding pathway plays a critical role in the amyloidogenicity of transthyretin. Biochemistry, 45(39):1199212002,
2006.
[159] Robert Tycko. Progress towards a molecular-level structural understanding of amyloid brils. Current opinion in structural biology, 14(1):96103, February 2004.
[160] Jesper So rensen, Donald Hamelberg, Birgit Schio tt, and J Andrew McCammon. Comparative MD analysis of the stability of transthyretin providing insight into the brillation mechanism. Biopolymers, 86(1):7382, 2007.
[161] Ming Lei, Mingfeng Yang, and Shuanghong Huo. Intrinsic versus mutation dependent instability/exibility: a comparative analysis of the structure and dynamics of wild-type transthyretin and its pathogenic variants. Journal of Structural Biology, 148(2):153168, 2004.
[162] Massimiliano Porrini, Ulrich Zachariae, Perdita E. Barran, and Cait E. MacPhee. Eect of Protonation State on the Stability of Amyloid Oligomers Assembled from TTR(105-115). The Journal of Physical Chemistry Letters, pages 1233 1238, 2013.
[163] Roger S. Armen, Darwin O V Alonso, and Valerie Daggett. Anatomy of an amyloidogenic intermediate: Conversion of beta-sheet to alpha-sheet structure in transthyretin at acidic pH. Structure, 12(10):18471863, 2004.
[164] Po-Jen Hsu. a New Perspective of Shape Recognition To Discover the Phase Transition of Finite-Size Clusters. Journal of computational chemistry, pages 111, 2014.
[165] J F Gibrat, T Madej, and S H Bryant. Surprising similarities in structure comparison. Current Opinion in Structural Biology, 6(3):377385, 1996.
[166] S E Brenner, C Chothia, and T J Hubbard. Population statistics of protein structures: lessons from structural classications. Curr Opin Struct Biol, 7(3):36976., 1997.
[167] J L Sussman, D Lin, J Jiang, N O Manning, J Prilusky, O Ritter, and E E Abola. Protein Data Bank (PDB): Database of Three-Dimensional Structural Information of Biological Macromolecules. Acta Crystallographica Section D Biological Crystallography, 54(6):10781084, 1998.
[168] Ajay and Mark A Murcko. Computational Methods to Predict Binding Free Energy in Ligand-Receptor Complexes. Journal of Medicinal Chemistry, 38(26):49534967, 1995.
175[169] T Lengauer and M Rarey. Computational methods for biomolecular docking. Current Opinion in Structural Biology, 6(3):402406, 1996.
[170] Michael K Gilson and Huan-Xiang Zhou. Calculation of protein-ligand binding quanities. Annual review of biophysics and biomolecular structure, 36:2142, 2007.
[171] Stefan Henrich, Outi M H Salo-Ahen, Bingding Huang, Friedrich F Rippmann,
Gabriele Cruciani, and Rebecca C Wade. Computational approaches to identifying and characterizing protein binding sites for ligand design. Journal of molecular recognition JMR, 23(2):209219, 2010.
[172] Jonas Bostrom, Anders Hogner, and Stefan Schmitt. Do structurally similar ligands bind in a similar fashion? Journal of Medicinal Chemistry, 49(23):6716 6725, 2006.
[173] A. Wunderlin and H. Haken. Generalized Ginzburg-Landau equations, slaving principle and center manifold theorem. Zeitschrift fur Physik B Condensed Matter, 44(1-2):135141, March 1981.
[174] H Haken. Are cooperative phenomena governed by universal principles. Naturwissenschaften, 67(3):121128, 1980.
[175] Hermann Haken. Slaving principle revisited. Physica D: Nonlinear Phenomena, 97(1-3):95103, 1996.
[176] L M Pecora and T L Carroll. Synchronization in chaotic systems. Physical Review Letters, 64(8):821824, 1990.
[177] P Bernaola-Galvan, R Roman-Roldan, and J L Oliver. Compositional segmentation and long-range fractal correlations in DNA sequences. Physical Review E Statistical Physics Plasmas Fluids And Related Interdisciplinary Topics , 53(5):5181
5189, 1996.
[178] R Roman-Roldan, P Bernaola-Galvan, and J L Oliver. Sequence compositional complexity of DNA through an entropic segmentation method. Physical Review Letters, 80(6):13441347, 1998.
[179] Wentian Li. DNA Segmentation as A Model Selection Process. Genetics, page 7, 2001.
[180] Wentian Li. New stopping criteria for segmenting DNA sequences. Physical Review Letters, 86(25):58155818, 2001.
[181] G Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461 464, 1978.
176[182] Siew-Ann Cheong, Paul Stodghill, David J Schneider, Samuel W Cartinhour, and Christopher R Myers. Extending the Recursive Jensen-Shannon Segmentation of Biological Sequences. Transactions on Computational Biology and Bioinformatics, page 30, 2009.
[183] Changjun Chen and Yi Xiao. Observation of multiple folding pathways of beta-hairpin trpzip2 from independent continuous folding trajectories. Bioinformatics (Oxford, England), 24(5):659665, 2008.
[184] Yi Xiao, Changjun Chen, and Yi He. Folding mechanism of beta-hairpin trpzip2: Heterogeneity, transition state and folding pathways. International journal of molecular sciences, 10(6):28382848, 2009.
[185] L Holm and C Sander. Mapping the protein universe. Science (New York, N.Y.), 273(5275):595603, 1996.
[186] Pietro Di Lena, Marco Vassura, Luciano Margara, Piero Fariselli, and Rita Casadio. On the Reconstruction of Three-dimensional Protein Structures from Contact Maps, 2009.
[187] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks, C. Sander, R. Zecchina, J. N. Onuchic, T. Hwa, and M. Weigt. PNAS Plus: Direct-coupling analysis of residue coevolution captures native contacts across many protein families, 2011.
[188] M Vendruscolo, E Kussell, and E Domany. Recovery of protein structure from contact maps. Folding & design, 2(5):295306, 1997.
[189] Alessandro Vullo, Ian Walsh, and Gianluca Pollastri. A two-stage approach for improved prediction of residue contact maps. BMC bioinformatics, 7:180, 2006. |