博碩士論文 992402001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.135.221.153
姓名 蘇彥碩(Yen-Shuo Su)  查詢紙本館藏   畢業系所
論文名稱 二維柱狀液體中之Tetratic 整齊因子及慢動力行為
(Tetratic Order and Slow Dynamics of 2D Rodlike Liquids)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 急速冷卻液體至熔點以下可防止結晶程序的發生。此過程稱為焠火。焠火液體的動力行為不但慢並且顯露出異質性。過去十年間,藉由分子動力行為以及膠體粒子實驗,焠火液體的異質運動的微觀起源被廣泛的研究,然而為了防止結晶程序的發生,普遍將粒子尺寸控制為不均勻。考慮到真實液體分子間的交互作用多半非均向,是否非均向交互作用可以取代粒子尺寸的不均勻性以防止結晶化的發生是一重要的開放問題。在此工作中,藉由 Langevin 動力模擬,我們研究了二維柱狀液體在暫態及穩態下的動力及相行為。在均向液體及結晶態之間的過渡tetratic態在降溫下被辨識。雖然此狀態下之位能高於結晶態,穩定的區域tetratic整齊結構提供了高度能量障蔽以防止結晶行為的發生。類似於典型過冷液體,在此tetratic狀態下的非均質動力行為亦被觀測。更進一步,平移跟旋轉自由度的擴散運動隨溫度變化發生了分離,但位移跟指向變化間的關聯性卻隨之上升。此一看似矛盾的結果可藉由此系統的典型集體運動描述。在低溫時旋轉方向的躍遷會破壞區域整齊性並導致周遭結構平移方向的躍遷,此一現象意味著指向方向的躍遷無法獨立的發生。反之,平移方向的躍遷可獨立發生不牽涉到指向方向的改變。此單方向的連結可提供一關於過冷液體中平移及旋轉運動關聯性之解釋。縮短柱狀液體分子之長度可壓抑tetratic結構的產生並仍可防止結晶化的發生。此結果意味著非均向性幾何形狀對結晶化程序有極為重要的影響。
摘要(英) Rapid cooling below the melting temperature can prevent liquids from crystallization. The dynamics of the quenched liquid is slow and heterogeneous. In the past decade, the origin of the slow and heterogeneous motion of the quenched liquid was studied by the molecular dynamics (MD) simulation or colloidal experiments. However, to prevent crystallization, some size inhomogeneity are commonly introduced into the system. Considering that the interaction of real liquid molecules are usually anisotropic, can the anisotropic interaction replace the size inhomogeneity to prevent crystallization is still an open and important issue. In this work, we study the phase behavior and the dynamics of 2D rodlike liquids in different transient and steady states through the Langevin dynamics simulation. An intermediate tetratic phase is identified between the isotropic liquid state and the crystal state under cooling. Although the potential energy of the phase is higher than that of the crystal, the stable local tetratic orders provide a high barrier to prevent crystallization. Similar to the typical supercooled liquid, the heterogeneous dynamics in the tetratic state is observed. Moreover, the translational and orientational diffusions in the system are decoupled but the correlation between displacement and orientation change shows the increased coupling. The conflict can be explained by the typical cooperative excitations of the system. At low temperature, the occurrence of the orientational hopping deteriorates the local structure and induces the surrounding translational hopping. It means that the orientational hopping cannot independently occur. On the contrary, the translational hopping can independently occur without inducing any orientation change. The unilateral coupling may be a building block to explain the similar behavior about the coupling and decoupling between translational and rotational dynamics in a supercooled liquid. Although the presence of the tetratic order of make the system different from the standard supercooled liquid, it is observed that shorten the rod length can suppress the formation of the tetratic order and still sufficiently prevent crystallization. The result suggests the importance of the anisotropic shape of particles to prevent crystallization.
關鍵字(中) ★ 液晶
★ 過冷液體
★ 慢動態
★ 玻璃化
關鍵字(英) ★ liquid crystal
★ supercooled liquid
★ slow dynamics
★ glassy behavior
論文目次 1 Introduction 1
2 Background and Theory 7
2.1 General Behaviors of a Liquid . . . . . . . . . . . . . . . . . . 7
2.1.1 Structure of a Liquid . . . . . . . . . . . . . . . . . . 7
2.1.2 Dynamics of a Liquid . . . . . . . . . . . . . . . . . . . 9
2.1.3 Simple Liquid and Some Modeling Systems . . . . . . . 11
2.1.4 Stokes-Einstein Relation and the Stokes-Einstein-Debye
Relation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Two-dimensional Melting Transition . . . . . . . . . . . . . . . 15
2.2.1 Topological Defect . . . . . . . . . . . . . . . . . . . . 15
2.2.2 KTHNY Theory . . . . . . . . . . . . . . . . . . . . . 16
2.3 Supercooled Liquid and Glass Transition . . . . . . . . . . . . 18
2.3.1 General Behaviors of a Supercooled Liquid . . . . . . 18
2.3.2 Dynamic Heterogeneity of a Supercooled Liquid . . . . 20
2.4 Liquid Crystal Behavior . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Nematic and Smectic Mesophase and Associated Mi-
crodynamics . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Phase Transition in a 2d Rodlike Liquid . . . . . . . . 23
3 Simulation 25
3.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Model of Rodlike Particles . . . . . . . . . . . . . . . . 25
3.1.2 Equation of Motion . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Anisotropic friction coecient . . . . . . . . . . . . . . 29
3.1.4 Parameter Setting and Numerical Method . . . . . . . 30
3.2 Computation Methods . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Periodic Boundary Condition . . . . . . . . . . . . . . 31
3.2.2 Subbox Calculations . . . . . . . . . . . . . . . . . . . 33
3.2.3 Neighboring List Generator . . . . . . . . . . . . . . . 33
4 Result and Discussion 35
4.1 Transient evolution of the rodlike liquid . . . . . . . . . . . . . 35
4.1.1 Quenching a rodlike liquid . . . . . . . . . . . . . . . . 35
4.1.2 Hysteresis and the formation of the tetratic phase . . . 43
4.2 The dynamics in the tetratic phase . . . . . . . . . . . . . . . 50
4.2.1 Ordering in the tetratic phase . . . . . . . . . . . . . . 50
4.2.2 Heterogeneous dynamics in the tetratic phase . . . . . 51
4.2.3 Collective excitation and the coupled dynamics . . . . 63
4.3 Suppressing the tetratic order . . . . . . . . . . . . . . . . . . 67
4.3.1 Supercooled liquid behavior of the short rodlike liquid 67
5 Conclusion 71
參考文獻 [1] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (ACA-
DEMIC PRESS LIMITED 1986).
[2] J.L. Yarnell, M.J. Katz, R.G. Wenzel, Phys. Rev. A 7, 2130 (1974).
[3] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter
Physics (Cambridge University Press 1995).
[4] P. N. Pusey, W. van Megen, P. Bartlett, B. J. Ackerson, J. G. Rarity,
and S. M. Underwood, Phys. Rev. Lett. 63, 2753 (1989).
[5] E. R. Weeks, J. C. Crocker, A. C. Levitt. A. Schoeld, and D. A. Weitz,
Science 287, 627 (2000).
[6] U. Gasser, Eric R. Weeks, A. Schoeld, P.N. Pusey, and D. A. Weitz,
Science 292, 258 (2001).
[7] L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, and H. Lowen,
Phys. Rev. Lett. 102,238301 (2009).
[8] Y. Peng, Z. Wang, A. M. Alsayed, A. G. Yodh, and Y. Han, Phys. Rev.
Lett. 104, 205703 (2010).
[9] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod. Phys. 68,
1259 (1996).
[10] P. M. Reis, R. A. Ingale, and M. D. Shattuck, Phys. Rev. Lett. 98,188301
(2007)
[11] K. Watanabe and H. Tanaka, Phys. Rev. Lett. 100, 158002 (2008).
[12] L. I, W. T. Juan, C. H. Chiang, J. H. Chu, Science 272, 1626 (1996).
[13] Y.J. Lai and L. I, Phys. Rev. Lett. 89, 155002 (2002).
[14] C. Yang, C. W. Io, and L. I, Phys. Rev. Lett. 109, 225003 (2012).
[15] J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, Phys. Rev. B 25, 4651
(1982).
[16] K. J. Naidoo and J. Schnitker, J. Chem. Phys. 100, 3114 (1994).
[17] L. A. Cameron, M. J. Footer, A. van Oudenaarden, and J. A. Theriot,
Proc. Natl. Acad. Sci. USA 96, 4909 (1999).
[18] H. P. Zhang , A. Be′er, E. L. Florin, and H. L. Swinney, Proc. Natl.
Acad. Sci. USA 107, 13626 (2010).
[19] T. C. Halsey and W. Toor, Phys. Rev. Lett. 65, 2820 (1990).
[20] T. C. Halsey, J. E. Martin, and D. Adolf, Phys. Rev. Lett. 68, 1519
(1992).
[21] V. N. Manoharan, M. T. Elsesser, and D. J. Pine, Science 301, 483
(2003).
[22] K. Zhao and T. G. Mason, Phys. Rev. Lett. 103,208302 (2009)
[23] M. D. Ediger, C. A. Angell and S. R. Nagel, J. Phys. Chem. 100, 13200
(1996).
[24] S. A. Kivelson, X. Zhao, D. Kivelson, T. M. Fischer, C. M. Knobler, J.
Chem. Phys. 101, 2391 (1994).
[25] Y. Han, N. Y. Ha, A. M. Alsayed, and A. G. Yodh, Phys. Rev. E 77,
041406 (2008).
[26] M. A. Bates and D. Frenkel, J. Chem. Phys. 112, 10034 (2000).
[27] R. Huang, I. Chavez, K. M. Taute, B. Lukic’, S. Jeney , M. G. Raizen
and E.-L. Florin, Nature Physics 7, 576 (2011).
[28] Aleksandar Donev, Joshua Burton, Frank H. Stillinger, and Salvatore
Torquato, Phys. Rev. B 73, 054109 (2006).
[29] Tanja Schilling and Daan Frenkel, Phys. Rev. Lett. 92, 085505 (2004).
[30] P. G. Debenedetti and F. H. Stillinger, Nature. 410, 259 (2001).
[31] Andrea Cavagna, Physics Reports 476 (2009).
[32] Ludovic Berthier and Giulio Biroli, Rev. Mod. Phys. 83, 587 (2011).
[33] Hajime Tanaka, Takeshi Kawasaki, Hiroshi Shintani and Keiji Watan-
abe, Nature Materials 9, 324 (2010).
[34] Peter Yunker, Zexin Zhang, Kevin B. Aptowicz, and A. G. Yodh, Phys.
Rev. Lett. 103, 115701 (2009).
[35] Zhongyu Zheng, Feng Wang, and Yilong Han, Phys. Rev. Lett. 107,
065702 (2011).
[36] Hiroshi Shintani and Hajime Tanaka, Nature Phys. 2, 200 (2006).
[37] Yen-Shuo Su, Yu-Hsuan Liu, and Lin I, Phys. Rev. Lett. 109, 195002
(2012).
[38] K. J. Strandburg, Bond-Orientational Order in Condensed Matter Sys-
tems (Springer, New York, 1992).
[39] Song-Ho Chong, and Walter Kob, Phys. Rev. Lett. 102, 025702 (2009).
[40] Kazem V. Edmond , Mark T. Elsesser , Gary L. Hunter , David J. Pine
, and Eric R. Weeks, Proc. Natl. Acad. Sci. USA 109, 17891 (2012).
[41] J. Jonas and J. A. Akai, J. Phys. Chem. 66, 4946 (1977).
[42] Alessandro Patti, and Alejandro Cuetos, Phys. Rev. E 86, 011403
(2009).
[43] Alessandro Patti, Djamel El Masri, Rene’van Roij, and Marjolein Dijk-
stra, Phys. Rev. Lett. 103, 248304 (2009).
[44] Vijay Narayan, Narayanan Menon, and Sriram Ramaswamy, J. Stat.
Mech. P01005 (2006).
[45] Taro Kihara, Rev. Mod. Phys. 25, 831 (1953)
[46] Muataz S. Al-Barwani and Michael P. Allen, Phys. Rev. E 62, 6706
(2000).
[47] A. Cuetos, B. Mart’nez-Haya, L. F. Rull, and S. Lago, J. Chem. Phys.
117, 2934 (2002).
[48] S. Tavaddod, M.A. Charsooghi, F.Abdi, H.R. Khalesifard,
andR.Golestanian, Eur. Phys. J. E 34, 16 (2011).
指導教授 伊林(Lin I) 審核日期 2014-5-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明