參考文獻 |
參考文獻
蔡瑩霏1998.胺基酸類似物及酒精逆境對大豆白化幼苗熱休克蛋白質基因表現之影響。國立台灣大學植物學研究所碩士論文。
黃仲義2002.篩選和鑑定水稻第一族低分子量熱休克蛋白質基因的新成員。國立台灣大學植物學研究所碩士論文。
官建洲2005.水稻第一族低分子量熱休克蛋白質基因群之研究:基因之鑑定、表現及調節。國立台灣大學植物學研究所博士論文。
林佩怡2003.番茄Lehsc70-3基因啟動子活性之定量分析。國立清華大學生命科學系碩士論文。
Almoguera C, Dapena PP, Jordano J (1998) Dual regulation of heat shock promoter during embryogenesis: stage dependent role of heat shock elements. Plant J. 13(4): 437-446.
Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J. 13: 519-527.
Bardwell JCA, Craig EA (1987) Major heat shock gene of Drosophila and Escherichia coli heat inducible dnaK gene are homologus. Proc. Natl. Acad. Sci. USA 84: 5177-5181.
Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell AM (1993) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode aphelenchus avenae. Plant J. 3: 363-369.
Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in arabidopsis. Plant Physiol. 129: 661-677.
Coca MA, Almoguera C, Thomas TL, Jordano J (1996) Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol. Biol. 31: 863-876.
Czarnecka E, Key JL, Gurley WB (1989) Regulatory domain of the Gmhsp17.5-E heat shock promoter of soybean. Mol. and Cellular Biol. 9: 3457-3463.
Desikan R, Cheung MK, Bright J, Neil SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot. 55: 205-212.
Desikan R, Mackerness1 SAH, Hancock JT, Neill SJ (2001) Regulation of the arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159-172.
Edelman L, Czarnecka E, Key JL (1988) Induction and accumulation of heat shock-specific poly(A+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. Plant Physiol. 86: 1048-1056.
Guan JC, Jinn TL, Yeh CH, Feng SP, Lin CY (2004) Characterization of the genomic structures and selective expression pro.les of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol. Biol. 56: 795-809.
Haralampidis K, Milioni D, Rigas S, Hatzopoulos P (2002) Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 genes. Plant Physiol. 129: 1138-1149.
Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkaul S, Buchner J (2004) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J. 23:638-649.
Holtorf S, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 29: 637-646.
Hong B, Barg R, Ho THD (1992) Developmental and organ-specific expression of an ABA-and stress-induced pretein in barley. Plant Mol. Biol. 18: 663-674.
Hsieh MH, Chen JT, Jinn TL, Chen YM, Lin CY (1992) A class of soybean low molecular weight heat shock proteins. Plant Physiol. 99: 1279-1284.
Jinn TL, Chang PFL, Chen YM, Key JL, Lin CY (1997) Tissue-type-specific heat-shock response and lmmunolocalization of class I low-molecular-weight -heat-shock proteins in soybean. Plant Physiol. 114: 429-438.
Jinn TL, Chen CC, Lin CY (2004) Azetidine-induced of class I small heat protein in the soluble fraction provide thermotolerance in soybean seedlings. Plant Cell Physiol. 45(12): 1759-1767.
Jinn TL, Chen YM, Lin CY (1995) Characterization and physiological function of class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physiol. 108: 639-701.
Kuo HF, Tsai YE, Young LS, Lin CY (2000) Ethanol treatment triggers a heat shock-like response but no thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. Plant Cell Environ. 23: 1099-1108.
Lee BH, Won SH, Lee HS, Mijao M, Chung WI, Kim IJ, Jo J (2002) Expression of the chroroplast localized small heat shock protein by oxidative stress in rice. Gene 245: 283-290.
Lee GJ, Pokala N, Vierling E (1995) Structure and in vivo molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270: 10432-10438.
Lee YL, Chang PFL, Yeh KW, Jinn TL, Kung CCS, Lin WC, Chen YM, Lin CY (1995) Cloning and characterization of a cDNA encoding an 18.0-kDa class-I low-molecular-weight heat-shock protein from rice. Gene. 165: 223-227.
Lee YRJ, Nagao RT, Lin CY, Key JL (1996) Induction and regulation of heat-shock gene expression by an amino acid analog in soybean seedlings. Plant Physiol. 110: 241-248.
Luo S, Lee AS (2002) Requirement of the p38 mitogen-activated protein kinase signalling pathway for the induction of the 78 kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein by azetidine stress : activating transcription factor 6 as a target for stress-induced phosphorylation. Biochem. J. 366: 787-795.
Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol. 141: 47-60.
Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 48: 667-681.
Maqbool S, Zhong H, El-Maghraby Y, Ahmad A, Chai B, Wang W, Sabzikar R, Sticklen B (2002) Competence of oat ( Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. Theor. Appl. Genet.105: 201-208.
Moriwaki M, Yamakawa T (1999) Delayed recovery of β-glucuronidase activity driven by an Arabidopsis heat shock promoter in heat -stress transgenic Nicotiana plumbaginifolia. Plant Cell 19: 96-100.
Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437-496.
Prändl R, Kloske E, Schöffl F (1995) Developmental regulation and tissue-specific differences of heat shock gene expression in transgenic tobacco and Arabidopsis plants. Plant Mol. Biol. 28: 73-82.
Rojas A, Almoguera C, Carranco R, Scharf KD, Jordano J (2002) Selective activation of the developmentally regulated Ha hsp17.6 G1 promoter by heat stress transcription factors. Plant Physiol. 129: 1207-1215.
Sabehat A, Lurie S, Weiss D (1998) Expression of small heat-shock proteins at low temperatures. Plant Physiol. 117: 651-658.
Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing crystalline domains (Acd proteins). Cell stress Chaperon. 6: 225-237.
Schöffl F, Prandl R, Reindl A (1998) Regulation of the heat-shock response. Plant Physiol. 117: 1135-1141.
Shen QJ, Casaretto JA, Zhang P, Ho THD (2004) Functional definition 0f ABA-response complexes: the promoter units necessary and sufficient for ABA induction of gene expression in barley (Hordeum Vulgare L.). Plant Mol. Biol. 54: 111-124.
Shin R, Kim MJ, Paek KH (2003) The CaTin1 (Capsicum annuum TMV-induced Clone 1) and CaTin1-2 genes are linked head-to-head and share a bidirectional promoter. Plant Cell Physiol. 44: 549-554.
Soto A, Allona I, Collada C, Guevara MA, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120: 521-528.
Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta. 1577: 1-9.
Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the arabidopsis Hsp70 gene family. Plant Physiol. 126: 789-800.
Tsukaya H, Takahashi T, Naito S, Komeda Y (1993) Floral organ-specific and constitutive expression of an Arabidopsi thaliana heat shock HSP18.2:: GUS fusion gene is retained even after homeotic conversion of flowers by mutation. Mol Gen Genet 237: 26-32.
Van Montfort RLM, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8: 1025-1030.
Vierling E. (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620.
Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 112: 747-757.
Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 122: 1099-1108.
Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257.
Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of late embryogenesis Abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257.
Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress:evolution of osmolyte systems. Science 217: 1214-1222.
Yeh CH, Chang PF L, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9-KDa heat shock protein, Oshsp 16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. USA 94: 10967-10972.
Yeh CH, Yeh KW, Wu SH, Chang PFL, Chen YM, Lin CY (1995) A recombinant rice 16.9-kDa heat shock protein can provide thermoprotection in vitro. Plant Cell Physiol. 36(7): 1341-1348. |