參考文獻 |
參考文獻
〔1〕 D. Pyle, “Data preparation for data mining,” Morgan Kaufmann, 1999.
〔2〕 X.-B. Li and V.S. Jacob, “Adaptive data reduction for large-scale transaction data,” European Journal of Operational Research, Vol. 188(3), pp. 910-924, 2008.
〔3〕 D.R. Wilson and T.R. Martinez, “Reduction techniques for instance-based learning algorithms,” Machine Learning, Vol. 38, pp. 257-286, 2000.
〔4〕 T. Reinartz, “A unifying view on instance selection,” Data Mining and Knowledge Discovery, Vol. 6, pp. 191-210, 2002.
〔5〕 Richard Ernest Bellman; Rand Corporation. “Dynamic programming,” Princeton University Press, 1957.
〔6〕 Republished: Richard Ernest Bellman. “Dynamic Programming,” Courier Dover Publications, 2003.
〔7〕 Richard Ernest Bellman. “Adaptive control processes: a guided tour,” Princeton University Press. 1961
〔8〕 F. Solis and R. Wets, “Minimization by random search techniques,” Math. Oper. Res., vol. 6, pp. 19–30, 1981
〔9〕 林豐澤,演化式計算上篇:演化式演算法的三種理論模式,智慧科技與應用統計學報,第三卷,第一期,2005。
〔10〕 Z. Michalewicz, “Genetic Algorithms Plus Data Structures Equals Evolution Programs 2nd,” Springer-Verlag New York, Inc. Secaucus, NJ, USA. 1994.
〔11〕 T. Back, D. B. Fogel and Z. Michalewicz, “Handbook of EvolutionaryComputation,” IOP Publishing Ltd. Bristol, UK, 1997.
〔12〕 D.H. Wolpert and W.G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, Vol. 1(1), pp.67-82, April 1997.
〔13〕 J.J. Liang, A.K. Qin, P.N. Suganthan and S. Baskar. “Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions,”. IEEE Transactions on Evolutionary Computation, volume 10, pages 281-296, 2006.
〔14〕 H. Liu and A. Abraham, “ Fuzzy Adaptive Turbulent Particle Swarm Optimization,” International Journal of Innovative Computing and Applications, volume 1, pages 39-47,2007.
〔15〕 White, Tom, “Hadoop: The Definitive Guide,” O′Reilly Media. p. 3,2012
〔16〕 Manyika, James; Chui, Michael; Bughin, Jaques; Brown, Brad; Dobbs, Richard; Roxburgh, Charles; Byers, Angela Hung, “Big Data: The next frontier for innovation, competition, and productivity,” McKinsey Global Institute, 2011
〔17〕 T. Back, D. B. Fogel and Z. Michalewicz, “Handbook of Evolutionary Computation,” IOP Publishing Ltd. Bristol, UK, 1997.
〔18〕 Jiang-wei Zhang ; Sch. of Comput. Sci. & Technol., Xuchang Univ., Xuchang, China ; Wen-jian Si, “Improved Enhanced Self-Tentative PSO algorithm for TSP,” Natural Computation (ICNC),2010 Sixth International Conference ,Vol5, 2010.
〔19〕 J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” IEEE Int. Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942-1948, 1995.
〔20〕 R. C. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory,” IEEE Int. Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39-43, 1995.
〔21〕 R. C. Eberhart and Y. H. Shi, “Particle swarm optimization: developments, applications and resources,” IEEE Int. Cong. on Evolutionary Computation, vol. 1, pp. 81-86, Seoul, Korea, 2001.
〔22〕 C. K. Zhang, H. Shao, and Y. Li, “Particle swarm optimization for evolving artificial neural network,” IEEE Int. Conf. on Systems, Man, and Cybernetics, vol. 4, pp. 2487-2490, Nashville, Tennessee, 2000.
〔23〕 V. Tandon, H. El-Mounayri and H. Kishawy, “NC end milling optimization using evolutionary computation,” International Journal of Machine Tools & Manufacture 42, pp. 595-605, 2002.
〔24〕 K.P. Wang, L. Huang, C.G. Zhou, and W. Pang, “Particle swarm optimization for traveling salesman problem,” in Proceedings of the Second International Conference on Machine Learning and Cybernetics, vol. 3, pp.1583-1585, 2003.
〔25〕 Hu, Xiaohui, R. C. Eberhart, and Y. Shi, “Swarm intelligence for permutation optimization: a case study of n-queens problem,” Swarm Intelligence Symposim,The Proceedings of the 2003 on IEEE(SIS′03), pp. 243-246, 2003.
〔26〕 Esmin, A.A.A., A.R. Aoki, G. Lambert-Torres, “Particle Swarm Optimization for Fuzzy Membership Functions Optimization,” IEEE International Conference, Vol. 3, 2002.
〔27〕 J Salerno, “Using the particle swarm optimization technique to train a recurrent neural model,”the Ninth IEEE International Conference on Tools with Artificial Intelligence, pp. 45-49, 1997.
〔28〕 T. Sousa, A. Silva, and A. Neves, “Particle swarm based data mining algorithms for classification tasks,” ELSEVIER on Parallel Computing, NO.30, pp.767-783, 2003.
〔29〕 Ayed Salman, Imtiaz Ahmad, and Sabah Al-Madani, “Particle swarm optimization for task assignment problem,” Microprocessors and Microsystems 26, pp. 363-371, 2002.
〔30〕 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, pp. 671-680, 1983.
〔31〕 Yao and Xin, “New simulated annealing algorithm,” International Journal of Computer Mathematics., vol. 56, no. 3-4, pp. 161-168, 1995.
〔32〕 V. Fabian, “Simulated annealing simulated,” Computers & Mathematics with Applications., vol. 33, no. 1-2, pp. 81-94, 1997.
〔33〕 Jorge Haddock and John Mittenthal, “Simulation optimization using simulated annealing”, Computers & Industrial Engineering, vol. 22, no. 4, pp. 387-395 , 1992.
〔34〕 Yang, Fan, Zhuang, Zhenquan, Dai and Yingxia , “Using simulated annealing,” International Conference on Circuits and Systems, Nanjing, China , pp. 175, 1989.
〔35〕 L. Ingber, “Very fast simulated re-annealing,” Mathematical and Computer Modeling, vol. 12, no. 8, pp. 967-973, 1989.
〔36〕 Hatay, Tolga, Toklu and Y. Cengiz,“Optimization of trusses using the simulated annealing method,” ARI Bulletin of the Istanbul Technical University, vol. 54, no. 1, pp. 67-71, 2004.
〔37〕 Reyes, Edgar, N. Steidley and Carl, “Optimization using simulated annealing,” Northcon - Conference Record, pp. 120-126, 1998.
〔38〕 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,“Equations of state calculations by fast computing machines,” Journal of Chemical Physics 21, pp. 1087-1092, 1953.
〔39〕 Twohig, Susan N. Aletan and Samuel O, “Traveling Salesman Problem,” Annual Computer Science Conference Proceedings, Washington, DC, pp. 437, Feb, 1990.
〔40〕 Gao and Shang, “ Solving TSP with simulated annealing algorithm,” Journal of East China Shipbuilding Institute, vol. 17, no. 3, pp. 13, June, 2003.
〔41〕 Stella Sofianopoulou, “Simulated annealing applied to the process allocation problem,” European Journal of Operational Research, vol. 60, no. 3, pp. 327-334, 1992.
〔42〕 Catoni and Olivier, “Solving scheduling problems by simulated annealing,” SIAM Journal on Control and Optimization, vol. 36, no. 5, pp. 1539-1575, 1998.
〔43〕 Hutchinson George K. Wynne, Bayard E. “Flexible manufacturing system,” Industrial Engineering, vo1. 5, no. 12, pp. 10-17, 1973.
〔44〕 Carrie, A. S. Adhami, E. Stephens, A. Murdoch, I. C. “Introducing a flexible manufacturing system,” International Journal of Production Research, vol. 22, no. 6, pp. 907-916, 1984.
〔45〕 Pengfei Guo, Xuezhi Wang, Yingshi Han, “The enhanced genetic algorithms for the optimization design, ” Liaoning University of Technology, p2991-2993, 2010.
〔46〕 M.A. Potter and K.A. de Jong, “A Cooperative Coevolutionary Approach to Function Optimization, ” In The Third Parallel Problem Solving From Nature, pages 249-257, 1994.
〔47〕 F. van den Bergh and A.P. Engelbrecht, “ A Cooperative Approach to Particle Swarm Optimization, ” IEEE Transactions on Evolutionary Computation, volume 8, pages 225-239, 2004.
〔48〕 J. Kennedy and R. Mendes, “Neighborhood Topologies in Fully-Informed and Best-of-Neighborhood Particle Swarms, ” IEEE International Workshop on Soft Computing in Industrial Applications, pages 45-50, 2003.
〔49〕 J.J. Liang, A.K. Qin, P.N. Suganthan and S. Baskar, “Comprehensive LearningParticle Swarm Optimizer for Global Optimization of Multimodal Functions, ” IEEE Transactions on Evolutionary Computation, volume 10, pages 281-296, 2006.
〔50〕 Shan Hongbo ,Li Shuxia ,Gong Degang and Lou Peng, “Genetic simulated annealing algorithm-based assembly sequence planning, ” Technology and Innovation Conference, 2006.
〔51〕 QI Ji-Yang, “Application of Improved Simulated Annealing Algorithm in Facility Layout Design, ” Control Conference (CCC), 2010 29th Chinese, 2010.
〔52〕 J.R. Cano, F. Herrera, M. Lozano, “Using evolutionary algorithms as instance selection for data reduction: an experimental study,” IEEE Transactions on Evolutionary Computation ,Vol. 7(6), pp. 561-575, 2003.
〔53〕 I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning Research, Vol. 3, pp. 1157–1182, 2003.
〔54〕 Shang Lei, "A Feature Selection Method Based on Information Gain and Genetic Algorithm," Computer Science and Electronics Engineering (ICCSEE), 2012 International Conference ,Vol. 2.
〔55〕 L. Nanni, A. Lumini, “A. Prototype reduction techniques: a comparison among different approaches, ” Expert Systems with Applications, Vol. 38, pp. 11820-11828, 2011.
〔56〕 Horst, R., Tuy, H. “Global Optimization (Deterministic Approaches) , ” Springer-Verlag, Berlin,1996.
〔57〕 Fletcher, R., “Practical Methods of Optimization, ” Wiley, Patstow,2001.
〔58〕 Sobol, I., “Uniformly Distributed Points in a Multidimensional Cube, ” Moscow,Znanie (‘‘Mathematics and Cybernetics” series in Russian).,1985.
〔59〕 Liberti, L., Kucherenko, S., “Comparison of deterministic and stochastic approaches to global optimization, ” International Transactions in Operational Research 12, 263–285.,2005.
〔60〕 Kucherenko, S., Sytsko, Y., “Application of deterministic low-discrepancy sequences in global optimization, ” Computational Optimization and Applications 30, 297–318.,2005.
〔61〕 Mille Pant, Radha Thangaraj and Ajith Abraham,“Improved Particle Swarm Optimization with Low-Discrepancy Sequences,” to appear in Proc. of IEEE Congress on Evolutionary Computation, 2008.
〔62〕 Nguyen X. H., Nguyen Q. Uy., R. I. Mckay and P.M. Tuan, “Initializing PSO with Randomized Low-Discrepancy Sequences: The Comparative Results,” In Proc. of IEEE Congress on Evolutionary Algorithms, 2007, pp. 1985 – 1992.
〔63〕 Millie Pant, Radha Thangaraj, Ved Pal Singh and Ajith Abraham, “ Particle Swarm Optimization Using Sobol Mutation,” Emerging Trends in Engineering and Technology, 2008.
〔64〕 Radu Rugina and Martin Rinard, “Recursion Unrolling for Divide and Conquer Programs,”13th International Workshop on Languages and Compilers for Parallel Computing-Revised Papers, Pages 34 - 48 ,2000
〔65〕 F. Gustavson. “Recursion leads to automatic variable blocking for dense linear-algebra algorithms,” IBM Journal of Research and Development, 41(6):737-755,November 1997.
〔66〕 J. Frens and D. Wise. “Auto-blocking matrix-multiplication or tracking BLAS3 performance from source code,” In Proceedings of the 6th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Las Vegas, NV, June 1997.
〔67〕 S. Chatterjee, A. Lebeck, P. Patnala, and M. Thottethodi. “Recursive array layouts and fast matrix multiplication,” In Proceedings of the 11th Annual ACM Symposium on Parallel Algorithms and Architectures, Saint Malo, France, June 1999.
〔68〕 Wil M.P. van der Aalst, “A general divide and conquer approach for process mining,” Computer Science and Information Systems (FedCSIS), 2013 Federated Conference, 2013
〔69〕 Qiu, Y. , & Frei, H. P., “Concept-based query expansion,” In Proceedings of SIGIR-93, 16th ACM International Conference on Research and Development in Information Retrieval, pp. 160-169, Pittsburgh,1993.
〔70〕 李世炳、鄒忠毅,簡介導引模擬退火法及其應用,物理雙月刊,第二十四卷,第二期,2002年。
〔71〕 Glover, F., “Tabu Search, part i.” ORSA Journal Of Computing, vol 1, 1989.
〔72〕 黃衍明,基因演算法之基本概念、方法與國內相關研究概況,國立成功大學建築研究所博士班都市與設計運算方法專題期末報告,2003。
〔73〕 郭信川、張建仁、劉仁清,粒子群演算法於最佳化問題之研究,第一屆台灣作業研究學會學術研討會暨2004年科技與管理學術研討會,2004。
|