博碩士論文 101521006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.149.235.171
姓名 高銥岑(Yi-Tsen Kao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子點的生醫感測與溫度檢測應用
(The Applications of Biosensor and Thermometer in Quantum Dot Systems)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們藉由Anderdson model及?帝旭格林函數的技巧來探討單電子電晶體的微分電導譜線特性,希望能將單電子電晶體應用在生醫感測與溫度檢測的領域。在生醫感測的部分,利用金屬奈米粒子包覆量子點殼層的奈米結構,觀察平行耦合量子點的微分電導譜線。我們會發現金屬奈米粒子造成的電子-電漿子交互作用(EPIs)會修正量子點能階、量子點內(間)庫倫交互作用力、電子跳躍強度以及穿隧率,同時也會在微分電導譜線看到電漿子輔助穿隧的機制。在溫度檢測的部分,我們與過去的文獻做比較,利用一般的單量子點奈米結構,探討微分電導譜線與溫度的關係,觀察量子點內庫倫交互作用力、穿隧率以及電位勢造成的量子點能階偏移對微分電導譜線半高寬與溫度的比值有何影響,看是否能如同文獻將微分電導譜線應用於溫度檢測。
摘要(英) In this thesis we have theoretically studied the transport properties of a metal core/semiconductor shell quantum dot molecule (QDM) embedded in a matrix connected to metallic electrodes in the framework of Keldysh Green function technique. The effects of the electron plasmon interactions (EPIs) on the tunneling current spectra of QDM are examined. The energy levels of the QDs, intradot and interdot Coulomb interactions, electron interdot hopping strengths, and tunneling rates of QDs are renormalized by the EPIs. The differential conductance spectra show peaks arising from the plasmon assisted tunneling process, intradot and interdot Coulomb interactions, and coherent tunneling between the QDs. We also discussed the application of QD thermometer. We found that the differential conductance of tunneling current is highly sensitive to physical parameters. Such a feature indicates that the measurement of differential conductance may not a good tool to design nanothermometer. Instead of differential conductance, we propose that Seebeck coefficient has the promising potential to design QD thermometer.
關鍵字(中) ★ 量子點 生醫感測 關鍵字(英) ★ quantum dot biosensor
論文目次 第一章 導論 1
1-1量子點的簡介與應用 1
1-2研究動機 3
第二章 金屬奈米粒子包覆量子點殼層之量子元件系統模型4
2-1 理論模型 4
2-2 EPIs對穿隧電流之影響 8
2-3金屬奈米粒子的簡介 13
2-3-1 金屬奈米粒子之應用 15
2-2-3 奈米粒子包覆半導體量子點之特性 16
第三章 平行量子點系統的電漿效應 19
3-1 不考慮EPIs的穿隧電流譜線分析 21
3-2 EPIs對穿隧電流譜線之影響 28
3-3 有限電子跳躍強度下對EPIs電流譜線之影響 34
第四章 量子點的溫度檢測應用 38
4-1量子點內庫倫交互作用力對微分電導譜線的影響 40
4-2左右電極穿隧率對微分電導譜線的影響 43
4-3電位勢差對量子點的能階偏移 45
第五章 結論 48
參考文獻 50
參考文獻 [1]R. Rossetti, S. Nakahara and L. E. Brus “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys. 79, 1086 (1983).
[2]C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campman, A. C. Gossard, ”The Coulomb Blockade in Coupled Quantum Dot,” science 274, 1332 (1996).
[3]Sara M. Cronenwett, Tjerk H. Oosterkamp, Leo P. Kouwenhoven, ”A Tunable Kondo Effect in Quantum dot,” Science 281, 540 (1998).
[4]K. Ono, D. G. Austing, Y. Tokura, S. Tarucha, “Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System,” science 297, 1313 (2002).
[5]C. A. Stafford and Ned S. Wingreen, “Resonant Photon-Assisted Tunneling through a Double Quantum Dot:An Electron Pump from Spatial Rabi Oscillations,” Phs. Rev. Lett. 76, 1916 (1996).
[6]David M.-T. Kuo and Yia-Chung Chang, “Tunneling Current Spectroscopy of a Nanostructure Junction Involving Multiple Energy Levels,” Phs. Rev. Lett. 99, 086803 (2007).
[7]Jonathan A. Scholl, Ai Leen Koh & Jennifer A. Dionne, “Quantum plasmon resonances ofindividual metallic nanoparticles,” Nature 483, 421 (2012).
[8]D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems, ” Phs. Rev. Lett. 90, 027402 (2003).
[9]Jianzhong Li and C. Z. Ning, “Induced Transparency by Intersubband Plasmon Coupling in a QuantumWell,” Phs. Rev. Lett. 93, 087402 (2004).
[10]Guillaume Schull, Nicolas Ne’el, Peter Johansson, and Richard Berndt, “Electron-Plasmon and Electron-Electron Interactions at a Single Atom Contact,” Phs. Rev. Lett. 102, 057401 (2009).
[11]Jiatao Zhang, Yun Tang, Kwan Lee & Min Ouyang, “Tailoring light–matter–spin interactions in colloidal hetero-nanostructures,” Nature 466, 91 (2010).
[12]Eyal Cohen-Hoshen, Garnett W. Bryant, Iddo Pinkas, Joseph Sperling, and Israel Bar-Joseph, “Exciton?Plasmon Interactions in Quantum Dot?Gold Nanoparticle Structures,” Nano Lett. 12, 4260 (2012).
[13]T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. To?ma, “Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritonsand Rhodamine 6G Molecules,” Phs. Rev. Lett. 103, 053602 (2009).
[14]Lin Zhou, Xiaoqiang Yu, and Jia Zhu, “Metal-Core/Semiconductor-Shell Nanocones for Broadband Solar Absorption Enhancement,” Nano Lett. 14, 1093 (2014).
[15]Xiaojun Ji, Jiayin Zheng, Jianmin Xu, Vipin K. Rastogi, Tu-Chen Cheng, Joseph J. DeFrank, and Roger M. Leblanc, “(CdSe)ZnS Quantum Dots and Organophosphorus Hydrolase Bioconjugate as Biosensorsfor Detection of Paraoxon, “ J. Phy. Chem. B 109, 3793 (2005).
[16]A. P. Ivanov, Emanuele Instuli, Catriona M. McGilvery, Geoff Baldwin, David W. McComb, Tim Albrecht, and Joshua B. Edel, “DNA Tunneling Detector Embedded in a Nanopore,” Nano Lett. 11, 279. (2011)
[17]Yan-Dong Guo, Xiao-Hong Yan, and Yang Xiao, “Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore,” J. Phy. Chem. B 116, 21609 (2012).
[18]Chuan-Jian Zhong and Mathew M. Maye, “Core Shell Assembled Nanoparticles as Catalysts,” Adv. Mater. 13, 1507 (2001).
[19]W. G. van der Wiel, S. De Franceschi and J. M. Elzerman, T. Fujisawa, S. Tarucha, L. P. Kouwenhoven, “Electron transport through double quantum dots,” Rev. Mod. Phys. 75, 1 (2002).
[20]Yia-Chung Chang, David M.-T. Kuo, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels,” Phys. Rev. B 77, 245412 (2008).
[21]David M.-T. Kuo, Shiue-Yuan Shiau, and Yia-chung Chang, “Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in seriallycoupled quantum dot system,” Phys. Rev. B 84, 245303 (2011).
[22]G. D. Mahan: Many-Particle Physics(Kluwer Academic/Plenum, Dordrecht, (2000).
[23]Zuo-Zi Chen, Rong Lu, and Bang-fen Zhu, “Effects of electron-phonon interaction on nonEquilibrium transport through a single-molecule transistor,” Phys. Rev. B 71, 165324 (2005).
[24]Antti-Pekka Jauho, Ned S. Wingreen, Yigal Meir, “Time-dependent transport in interacting and noninteracting resonant-tunneling systems,” Phys. Rev. B 50, 5528 (1994).
[25]David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field,” Phys. Rev. B 61, 11051 (2000).
[26]S. V. Gaponenko, “Optical properties of semiconductor nanocrystals,” Cambridge University Press, 1998.
[27]Ya-Ping Hsieh, Chi-Te Liang, Yang-Fang Chen, Chih-Wei Lai, and Pi-Tai Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nano Lett. 18, 415707 (2007).
[28]P. W. Li, W. M. Liao, David M.-T. Kuo, W. C. Tsai, S. W. Lin, P. S. Chen, S. C. Lu, and M. –J. Tsai, "Fabrication of a Germanium Quantum-dot Single Electron Transistor with Large Coulomb-blockade Oscillations at Room Temperatures" , Appl. Phys. Lett. 85, 1532 (2004).
[29]Audrey Moores, Frederic Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theoryand applications,” New J. Chem. 30, 1121 (2006)
[30]C. Kittle, Introduction to Solid State Physics, (WILEY, 2004).
[31]Stephan Link, Mostafa A. El-Sayed , “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” Phys. Chem. B 103, 8410 (1999).
[32]U. Kreibig, M. Vollmer, “Optical Properties of Metal Clusters,” Vol. 25. Springer: Berlin, 1995.
[33]Prashant K. Jain and Mostafa A. El-Sayed, “Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing,” Nano Lett. 8 4347 (2008).
[34]C. E. Talley, et al., “Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates,” Nano Lett. 5, 1569 (2005).
[35]Nidhi Nath, Ashutosh Chilkoti , ”A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface,” Anal. Chem. 74, 504 (2002).
[36]Lin Zhou, Xiaoqiang Yu, and Jia Zhu, “Metal-Core/Semiconductor-Shell Nanocones for Broadband Solar Absorption Enhancement,” Nano Lett. 14 (2014) 1093.
[37]David M.-T. Kuo, "Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot" , Physica E 27, 355 (2005).
[38]P. Pekola, K. P. Hirvi, J. P. Kauppinen, and M. A. Paalanen, “Thermometry by Arrays of Tunnel Junctions,” Phs. Rev. Lett. 73 (1994) 2903.
[39]Preeti Mani, Natthapon Nakpathomkun, Eric A. Hoffmann, and Heiner Linke “A Nanoscale Standard for the Seebeck Coefficient,” Nano Lett. 11, 4679 (2011).
[40]Yen-Chun Tseng and David M.-T. Kuo “Current Rectification and Seebeck Coefficient of Serially Coupled Double Quantum Dots,” Jpn. J. Appl. Phys. 52 (2013)
指導教授 郭明庭(M.-T. Kuo) 審核日期 2014-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明