以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:30 、訪客IP:3.138.105.4
姓名 陳仕棋(Shih-chi Chen) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 道路防災保護決策最佳化之研究
(Highway Network Protection Considering Connectivity Reliability)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 運輸系統是人類生活不可或缺的重要命脈,在運輸系統中又以公路系統為重要的一部份。然而,公路路網系統往往因為天然災害造成損壞,使得公路路段無法正常運作,路網之連通性也跟著受到影響。是故,如何對公路路網系統事先進行防災以及預防措施避免災後造成嚴重破壞便成了重要的課題。此外,在進行災前預先防護的計畫上,若能發展一套利用路網系統可靠度為評估指標之模型,其路段保護決策將能夠讓決策者在進行路網保護計畫時有合適的參考依據,並進一步提升保護決策之正確性。
本研究將探討若天然災害發生前能對某些路段進行保護,避免災害來臨時造成路段的阻斷,以維持整體公路路網系統的連通性。由於天然災害造成公路路網系統的損壞通常是隨機性的且難以預測,再進行路段保護決策時有一定的難度。因此本研究發展出以路網系統可靠度為最佳化目標之隨機規劃數學模式,研究中利用路網OD起迄對連通總數期望值為基礎,定義不同連通可靠度指標,在隨機災害情境中進行路段保護之決策,比較不同可靠度為目標之決策並進一步分析其決策之結果。
研究中先以虛擬路網測試隨機規劃模式對於路段保護決策之正確性,接著以苗栗地區公路橋梁系統進行實際案例之應用,利用台灣地震損失評估系統(TELES)模擬地震災害所造成公路橋梁損壞之情境進行分析。案例分析的結果顯示本研究所建構之隨機規劃模式能夠有效的改善公路路網連通可靠度。本研究所發展出之隨機規劃模型能夠根據不同路段保護預算限制下做出對整體最佳的路段保護決策,在預算緊縮之情況下也能夠做出對大部分災害情境最有利的路段保護決策,使得絕大部分之災害情境能夠有最大的連通可靠度。此模式能夠有效的提供決策者在進行路網保護計畫時的參考依據,進一步提升路段保護決策之正確性。
摘要(英) A country’s transportation system is indispensible because it has a direct impact on the economic development and the quality of people’s life. Highway system is one of the most important systems in transportation. However, a highway network is subject to natural disasters. When highway links lose functionality due to a disaster, the connectivity of the network could be affected, that is, some or all of the travel demand cannot be satisfied. In addition, it is beneficial to improve the performance of highway network system and protect against natural disasters if we develop a decision-making processes for protecting highway network system in advance.
In this study, we consider a situation where some links of the network can be protected against the disaster to maintain the connectivity of the network. Because the damage to a highway network caused by a disaster is probabilistic, making protection decisions is difficult. In this study, the connectivity reliability has been introduced as a performance measure. We develop a stochastic programming model to find the optimal protection strategy for a highway network system that maximizes connectivity reliability. Based on the expected number of origin-destination (OD) pairs that can be served under all scenarios of link failure due to a disaster, we also define three different indicators of connectivity reliability of a network.They can be used to evaluate protection strategies for a highway network subject to disasters.
The proposed model is demonstrated with the highway bridge systems of Miaoli City. The natural disasters we consider are earthquakes that were simulation by the Taiwan Earthquake Loss Estimation System (TELES). The results show that the proposed model has potential for improving highway network connectivity reliability.
關鍵字(中) ★ 路網可靠度
★ 連通可靠度
★ 隨機規劃關鍵字(英) ★ Network Reliability
★ Connectivity Reliability
★ Stochastic Programming論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究問題與目的 2
1.3 研究範圍與限制 2
1.4 研究內容與流程 2
第二章 文獻回顧 4
2.1 路網可靠度評估指標 4
2.1.1 連通可靠度(Connectivity reliability) 4
2.1.2 旅行時間可靠度(Travel time reliability) 7
2.1.3 容量可靠度(Capacity reliability) 9
2.2 K-最短路徑演算法 11
2.2.1 Label correcting algorithm 11
2.2.2 Yen’s algorithm 12
2.3 TELES台灣地震損失評估系統 13
2.4 相關防災研究文獻 14
2.5 小結 15
第三章 研究方法 16
3.1 數學規劃模型 16
3.2 測試範例 21
3.2.1 設定初始條件 21
3.3 測試範例分析結果 28
3.3.1 目標式(1)Max ,總預算充足 28
3.3.2 目標式(1)Max ,總預算降為4 33
3.3.3 目標式(1)改變災害發生機率 39
3.3.4 目標式(2)Max ,總預算充足 42
3.3.5 目標式(2)Max ,總預算為4 47
3.3.6 目標式(3)Max ,總預算充足 53
3.3.7 目標式(3)Max ,總預算為4 58
3.3.8 最大最小化問題(Maximin Problem) 59
第四章 案例應用 60
4.1 前言 60
4.2 災害情境模擬 61
4.3 路網建構及參數設置 64
4.4 實例求解結果 65
4.4.1 目標式(1)Max ,總預算50% 65
4.4.2 目標式(1)Max ,總預算緊25% 67
4.4.3 目標式(2)Max ,總預算50% 69
4.4.4 目標式(2)Max ,總預算25% 71
4.4.5 目標式(3)Max ,總預算50% 73
4.4.6 目標式(3)Max ,總預算25% 75
4.5 實際案例分析結果 77
第五章 結論與建議 79
5.1 結論 79
5.2 建議 80
參考文獻 81
附錄 83
附錄1.苗栗公路橋梁路網示意圖 83
附錄2.苗栗路網路段旅行成本及連接橋梁保護成本 87
參考文獻 1. Asakura, Y. and Kashiwadani, M. (1991). Road network reliability caused by daily fluctuation of traffic flow, Proceedings of the 19th PTRC Summer Annual Meeting, Brighton, 73–84.
2. Bellman, R. E. (1958). On a Routing Problem, Quarterly of Applied Mathematics, vol. 16, 87-90.
3. Bell, M. G., and Iida, Y. (1997). Transportation network analysis. 111 River Street, Hoboken, NJ 07030-6000 USA:John Wiley and Sons.
4. Chen, A., Yang, H., Lo, H.K., and Tang, W. (1999). A capacity related reliability for transportation network. Journal of Advanced Transportation, 33(2), 183–200.
5. Chen, A., Yang, H., Lo, H. K., and Tang, W. H. (2002). Capacity reliability of a road network: an assessment methodology and numerical results. Transportation Research Part B, 36(3), 225-252.
6. Du, Z.P., and Nicholson, A.J. (1997). Degradable transportation system: sensitivity and reliability analysis. Transportation Research Part B, 32(3), 225-237.
7. Iida, Y., and Wakabayashi, H. (1989). An approximation method of terminal reliability of road network using partial minimal path and cut sets. In Transport Policy, Management & Technology Towards 2001: Selected Proceedings of the Fifth World Conference on Transport Research (Vol. 4).
8. Iida, Y. (1999). Basic concepts and future directions of road network reliability analysis. Journal of advanced transportation, 33(2), 125-134.
9. Kondo, R., Shiomi, Y., and Uno, N. (2012). Network evaluation based on connectivity reliability and accessibility. In Network Reliability in Practice. Springer New York.
10. Mine, H., and Kawai, H. (1982). Mathematics for reliability analysis. M]. Tokyo: Asakura-shoten.
11. Peeta, S., Sibel Salman, F., Gunnec, D., and Viswanath, K. (2010). Pre-disaster investment decisions for strengthening a highway network. Computers & Operations Research, 37(10), 1708-1719.
12. Sohn, J., Kim, T. J., Hewings, G. J., Lee, J. S., and Jang, S. G. (2003). Retrofit priority of transport network links under an earthquake. Journal of Urban Planning and Development, 129(4), 195-210.
13. Sohn, J. (2006). Evaluating the significance of highway network links under the flood damage: An accessibility approach. Transportation research part A: policy and practice, 40(6), 491-506.
14. Wong, S. C., and Yang, H. (1997). Reserve capacity of a signal-controlled road network. Transportation Research Part B, 31(5), 397-402.
15. Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. Management Science, 17(11), 712-716.
16. 交通部公路總局(2013),苗栗縣縣管橋梁資料庫,交通部公路總局。
17. 葉錦勳(2003),台灣地震損失評估系統-TELES,國家地震工程研究中心報告,NCREE-03-002,台北。
指導教授 朱致遠、周建成(James C.Chu Chien-Cheng Chou) 審核日期 2014-7-14 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare