博碩士論文 102322602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.140.197.140
姓名 安南達(Ananda Insan Firdausy)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(PRELIMINARY STUDY ON SEISMIC RESPONSES OF SINGLE-STORY REINFORCED CONCRETE FRAME WITH DIFFERENT ARRANGEMENT OF MASONRY INFILL WALL)
相關論文
★ 鋼筋混凝土構架制震設計與分析★ 版牆結構隔減震設計
★ 連續壁防治土壤液化之初步研究★ 符合設計譜人工地震之相位角對樓板反應譜之影響
★ 樁基礎橋梁地震反應分析★ 利用連續壁防治土壤液化之探討
★ Nakamura方法估算土壤第一模態頻率之適用性研究★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制
★ 側向非均勻土層之地表受震反應★ 砂土層中井樁承受反覆水平荷重之初步研究
★ 以人工地震探討二維不規則土層對建築物受震反應的影響★ 以離心模型試驗探討高含水量黏性背填土 加勁擋土牆之穩定性
★ 以加勁長度改善高含水量下粘土加勁擋土牆穩定性之研究★ 內扶壁在基一區(K1)對連續壁變位之影響
★ 打樁引致非均質土層地表振動數值之模擬★ 深開挖工程與鄰近捷運隧道受震反應的三維分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鋼筋混凝土建築物因考量居住性及機能性的問題,填充牆時常被用於建築物內,材料較多為磚塊組合成的,但是在結構物設計時,通常填充牆不被視為對結構影響的結構元件,所以整體分析時忽略其在結構物內的分佈,以避免複雜的計算,並簡化分析。
這一初步研究的目的是探討利用宏觀模型(桿狀型),考慮單層單跨鋼筋混凝土框架結構,用於分析有不同填充牆的開孔分佈比較其結果與使用的微觀模型(牆元素模型)對結構物整體地震反應的差別。數值模擬是用軟件MIDAS / GEN進行。
相較於空構架模型,考慮填充牆增加鋼筋混凝土框架結構的勁度,同時本研究中所用的公式和建模方式,對角斜撐桿狀模型比牆元素模型有更小的自然頻率。當考慮牆壁開口的部分,會造成柱子有部分地方與牆上面沒有接觸,短柱效應可能會因此產生,而當填充牆的高度變小,短柱效應也將變得更小。牆元模型在預測短柱效應上優於桿狀模型,雖然在靜態側推分析上,由桿狀模型來模擬填充牆被認為是較適合來模擬無任何開口的填充牆的結構行為,但在動態分析上並沒有相同的情況。在某些分析案例上,使用桿狀模型有較高的值。基本上,填充牆寬度的變化對結構並沒有顯著的影響。不同的力量只能在具有桿狀元素與填充牆接觸的部分才能觀察到。
摘要(英) For functional reasons, infill walls are used in reinforced concrete building and masonry is a material commonly used for such infill walls. In design and analysis, usually masonry infill walls are not considered as structural elements and their influences on the structural responses are ignored to avoid complicated calculations and to simplify analyses.
The objective of this preliminary study is to investigate the suitability of using macro model (strut model) for analyzing the seismic responses of single-story single-span reinforced concrete frames having different arrangement of masonry infill wall with openings by comparing its results with those using micro model (wall-element model). The numerical simulations were conducted using software Midas/GEN.
The infill masonry wall increases the stiffness of RC frame structure, as compared with pure frame model. Meanwhile, the diagonal strut model will give smaller natural frequencies than wall-element model based on the formula and modelling technique used in this study. When the part of the wall opening causes the wall to have no contact with a column, short column effect will be introduced in the column. When the height of infill wall becomes smaller, the short column effect will become smaller. Wall-element model can predict better the short column effect than the strut model. Although under static lateral load replacing masonry infill wall by diagonal strut was considered to be suitable for computing the response structure behaviour for the case without any opening in infill wall, it is not the case for the dynamic analysis. In some cases much higher values can be obtained using the strut model. Basically, variation of infill width does not affect structure response significantly in partial width model. The different forces can be observed only in the part of infill wall having contact with frame element.
關鍵字(中) ★ 鋼筋混凝土填充牆
★ 填充牆
★ MIDAS / GEN
★ 斜壓桿
★ 地震反應
★ 短柱效應
關鍵字(英) ★ RC infill wall
★ Masonry wall
★ Midas/GEN
★ Diagonal compression strut
★ Seismic response
★ Short column effect
論文目次 ABSTRACT ………………………………………………………………………. i
LIST OF CONTENT …………………………………………………………….. iii
LIST OF TABLE ………………………………………………………………… v
LIST OF FIGURE ……………………………………………………………….. vi

CHAPTER 1 INTRODUCTION ………………………………………………… 1
1.1 Background …………………………………………………………………….. 1
1.2 Research Objectives ……………………………………………………………. 1
1.3 Organization of Thesis ………………………………………………………… 2

CHAPTER 2 LITERATURE REVIEW ……………………………………….. 3
2.1 Introduction ……………………………………………………………………. 3
2.2 Modelling of Masonry Infill Wall ……………………………………………… 3
2.2.1 Micro Models ……………………………………………………………. 3
2.2.2 Macro Models (Equivalent Diagonal Strut) …………………………….. 5
2.3 Analytical Simulation Studies for Infill Wall with Opening ………………….. 6
2.4 Failure Modes of Masonry Infill Wall ………………………………………… 8

CHAPTER 3 RESEARCH METHODOLOGY AND VERIFICATION …….. 10
3.1 Introduction ……………………………………………………………………. 10
3.2 Midas/GEN …………………………………………………………………….. 10
3.3 Verification …………………………………………………………………….. 11
3.4.1 Static Case ………………………………………………………………. 11
3.4.2 Seismic Case …………………………………………………………….. 12

CHAPTER 4 RESULT AND DISCUSSION …………………………………… 14
4.1 Introduction ……………………………………………………………………. 14
4.2 Effect of Infill Wall Height ……………………………………………………. 15
4.2.1 Natural Frequency ………………………….…………………………… 15
4.2.2 Axial Force ……………………………………………………………… 15
4.2.3 Shear Force ……………………………………………………………… 17
4.2.4 Bending Moment ………………………………………………………… 20
4.3 Effect of Masonry Infill Wall Width …………………………………………… 23
4.3.1 Axial Force ……………………….……………………………………… 23
4.3.2 Shear Force ……………………………………………………………… 24
4.3.3 Bending Moment ……………………………………………………….. 25

CHAPTER 5 CONCLUSIONS AND RECOMMENDATION ……………….. 27
5.1 Conclusions ……………………………………………………………………. 27
5.2 Recommendations ……………………………………………………………… 28

REFERENCE ……………………………………………………………………… 29
參考文獻 1. Achyutha, H., Jagadish, R., et al (1985). Finite Element Simulation of the Elastic Behaviour of Infilled Frames with Openings, Journal of Computers & Structures, Volume 23, Issue 5, Pages 685–696.
2. Asteris, P.G., Kakaletsis, D. J., and Chrysostomou, C. Z. (2011). Failure Modes of In-filled Frames. Electronic Journal of Structural Engineering (EJSE) 11(1) 2011.
3. Ahmed, K. H., Sayed, F. K., and Ahmed, M. H. (2013). Equivalent Strut Width for Modeling RC Infilled Frames. Journal of Engineering Sciences, Assiut University, Faculty of Engineering, Vol. 41, No. 3, May, 2013.
4. Albanesi, S., Albanesi, T., and Carboni, F. (2004). The Influence of Infill Walls in RC Frame Seismic Response. High Performance Structures and Materials II. ISBN 1-85312-717-5, WIT Press.
5. Binici, B. and Ozcebe, G. (2006). Seismic Evaluation of Infilled Reinforced Concrete Frames Strengthened with FRPs. Proceedings of the 8th U.S. National Conference on Earthquake Engineering.
6. Catherin, J. M., Jayalekshmi, B. R., and Katta, V. (2013). Modeling of Masonry infills-A review. American Journal of Engineering Research (AJER) e-ISSN : 2320-0847 p-ISSN : 2320-0936 Volume-2 pp-59-63.
7. Chrysostomou, C.Z. (1991). Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Two-Dimensional Steel Frames, Doctoral dissertation, Cornell University, Ithaca, N.Y.
8. Combescure, D., and Pegon, P., et al. (1995). Tests on Masonry Infilled RC Frame and Its Numerical Interpretation. Eleventh World Conference on Earthquake Engineering. Paper No. 1731. ISBN: 0-08-042822-3.
9. Dhanasekar, M., and Page A, W. (1986). The Influence of Brick Masonry Infill Properties on the Behaviour of Infilled Frames. Proceeding of Engineering Structural Group. Part 2. December. Page 593-605.
10. Diware, V. V., and Saoji, A. C. (2012). Seismic Assessment of Symmetrical RC Structure with Brick Masonry Infills. International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622. Vol. 2, Issue 3, May-Jun 2012, pp.2573-2577.
11. Dorji, J. and Thambiratnam, D. P. (2009). Modelling and Analysis of Infilled Frame Structures Under Seismic Loads. The Open Construction and Building Technology Journal, 2009, 3, 119-126.
12. El-Dakhakhni, W. W., Hamid, A. A., and Elgaaly, M. (2004). Seismic Retrofit of Masonry Infill Walls Using Advanced Composites. 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004. Paper No. 3093
13. El-Dakhakhni, W. W., Hamid, A. A., and Elgaaly, M. (2004). Strength and Stiffness Prediction of Masonry Infill Panels. 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004. Paper No. 3089
14. Haddad, M., H. (1991). Finite Element analysis of Infilled Frames Considering Cracking and Separation Phenomena. Journal of Computers & Structures. Volume 41, Issue 3, Pages 439-447.
15. Holmes, M., (1961). Steel Frames with Brickwork and Concrete Infilling. Proceedings of the Institution of Civil Engineers, Vol. 19, pp. 473-478.
16. Kadir M.R.A. (1974). The Structural Behavior of Masonry Infill Panels Framed Structures, Doctoral dissertation, University of Edinburgh.
17. Kaushik, H. B., Rai, D.C., and Jain, S. K. (2008). A Rational Approach to Analytical Modeling of Masonry Infills in Reinforced Concrete Frame Buildings. The 14th World Conference on Earthquake Engineering 2008. Beijing, China.
18. Klinger, R, E., And Bertero, V, V. (1976). Infilled Frames in Earthquake Resistant Construction. Earthquake Engineering Research Center, University of California, Berkeley, CA, Rep. EERC 76-32, December.
19. Liaw, T, C., and Kwan, K, H. (1984). Nonlinear Behavior of Non-integral Infilled Frames. Journal of Computers & Structures. Vol. 18, Pages: 551-560.
20. Mahmud, K., Islam, M. R., and Amin, M. A. (2010). Study the Reinforced Concrete Frame with Brick Masonry Infill due to Lateral Loads. International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol:10 No:04.
21. Mainstone, R. J. (1971). On the Stiffness and Strengths of Infilled Frames, Proceedings the Institution of Civil Engineers, Supplement IV, pp. 57–90.

22. Mondala, G., and Jain, S. K. (2008). Lateral Stiffness of Masonry Infilled Reinforced Concrete (RC) Frames with Central Opening. Earthquake Spectra, Volume 24, No. 3, pages 701–723, August 2008. Earthquake Engineering Research Institute.
23. Paulay, T., and Priestly, M. J. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings. A Wiley Interscience Publication John Wiley & Sons, Inc. New York.
24. Polyakov, S. V., (1960). On the Interaction between Masonry Filler Walls and Enclosing Frame when Loaded in the Plane of the Wall. Earthquake Engineering: Earthquake Engineering Research Institute, San Francisco, CA, pp. 36-42.
25. Pradhan, P. M. (2012). Equivalent Strut Width for Partial Infilled Frames. Journal of Civil Engineering Research 2013, 2(5): 42-48.
26. Rathi, R. P., and Pajgade, P. S. (2012). Study of Masonry Infilled R.C. Frame With and Without Opening. International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 ISSN 2229-5518.
27. Samoila, D. M. (2012). Analytical Modelling of Masonry Infills. Acta Technica Napocensis: Civil Engineering and Architecture Vol. 55 No. 2. 127-136.
28. Sofianto, M, F. (2014). Preliminary Study on Seismic Response of RC Building with RC Infill Wall. Master thesis. National Central University, Taiwan.
29. Smith, S, B., and Carter, C., (1969). A Method of Analysis for Infilled Frames. Proceeding the Institute of Civil Engineers, Vol. 44, pp. 31-48.
30. Su, R. K., Lee, Y. Y., and Ho, J. C. (2011). Typical Collapse Modes of Confined Masonry Buildings under Strong Earthquake Loads. The Open Construction and Building Technology Journal, 2011, 5, (Suppl 1-M2) 50-60.
31. Tabeshpour, M. R. and Azad, A. (2012). Seismic Behavior and Retrofit of Infilled Frames, Earthquake-Resistant Structures-Design, Assessment and Rehabilitation. 279-307. ISBN: 978-953-51-0123-9, InTech.
指導教授 陳慧慈(Huei-tsyr Chen) 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明