博碩士論文 101322054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.226.226.158
姓名 顏均豪(YAN, JYUN-HAO)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 土石流撞擊直立平板之水壓及作用力分析
相關論文
★ 不均勻圓形橋墩之局部沖刷研究★ 砂礫河床之跌水沖刷分析
★ 土石流潛勢判定模式及土石壩滲流破壞之研究★ 港池污染擴散影響因子之探討
★ 不均勻橋墩及群樁基礎之局部沖刷研究★ 邊牆射流及尾檻對砂質底床之沖刷研究
★ 砂粒受水平振動行為之研究★ 土石流發生之水文特性探討
★ 不均勻橋墩與套環保護工法之局部沖刷研究★ 護坦及尾檻下游之局部沖刷分析
★ 橋台束縮與局部沖刷之研究★ 慢顆粒流之輸送帶實驗與影像分析
★ 均勻入滲時坡面地下水流之理論解析★ 尾檻設置對下游之局部沖刷效應
★ 二維斜坡顆粒流之輸送帶實驗與分析★ 斜坡土體滲流破壞引致土石流之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 土石流流動過程中,湧浪前端往往夾帶大量泥水及大小不一的顆粒,顆粒與水之間的作用及顆粒與顆粒接觸產生的力量在高流動速度下具有相當大破壞性。當湧浪撞擊到結構物上,動水壓及顆粒所造成的損害往往是無法預想得到的,因此要如何在土石流流動過程中逐漸減緩其撞擊力,使結構體避免直接與土石流接觸,為當前防治土石流重要的一環。
本實驗分別對於水流碰撞、顆粒流碰撞及單顆粒碰撞進行一系列測試,水流碰撞及顆粒流碰撞部份主要以不同條件下潰壩實驗來進行,分別為不同潰壩初始水深及不同顆粒鋪設高度(相同潰壩初始水深),得出不同初始水深下影響撞擊力、流動速度及流動厚度,且最大動水壓約初始水深兩倍;不同鋪設顆粒高度下,水量、顆粒多寡及顆粒間摩擦阻力會影響撞擊力、流動速度及湧浪形成。顆粒碰撞部份主要以單擺顆粒撞擊實驗進行,利用不同高度落下撞擊不同材質物體,分別為受力鋼板及木板,得出落下高度影響撞擊速度、接觸時間及撞擊力消減程度。實驗中木板撞擊力消減程度約在70-75% 之間,但隨高度增加,撞擊力消減程度會隨之降低。期待未來能進行更多材質之撞擊力消減測試,以提供現地參考採用。
摘要(英) In the process of debris-flow movement, the front surge consisting of muddy water and particles of varied sizes is most destructive due to its high velocity. When the surge impact upon the structure occurs, the dynamic water pressure and particle-wall collision may cause unpredictable damages. Both the response of dynamic water pressure and particle-wall collision for the surge-wall interaction are experimentally examined in the study. The dynamic water pressure upon wall by a surge was analyzed by performing the dam-break experiments with varied upstream water depths. While the particle-wall collisions was carried out by the pendulum- vertical plate collision with the load-cell measurement. The dimensionless peak-pressure distribution on the wall depends on the initial upstream water depth and the free-surface slope for the surge. The maximum dynamic pressure head is about two times of the upstream water depth. The collision force depends on the impact velocity and the wall – particle stiffness. The wood board adsorbs the impact force at the degree of approximately 70-75%. However, as the impact velocity increases, the reduction ratio of the impact force decreases.
關鍵字(中) ★ 湧浪
★ 潰壩
★ 動水壓
★ 顆粒碰撞
★ 撞擊力
關鍵字(英) ★ surge
★ dam break
★ dynamic water pressure
★ particle collision
★ impact force
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究方法 2
1.4 論文架構 3
第二章 文獻回顧 5
2.1 潰壩研究 5
2.2 流體碰撞研究 9
2.2.1 流體靜力碰撞 9
2.2.2 流體動力碰撞 9
2.3 顆粒碰撞研究 10
2.4 赫茲接觸理論雙球體碰撞 11
2.4.1 最大接觸力 12
2.4.2 接觸時間 13
2.5 顆粒撞擊力消減 15
第三章 實驗配置與方法 16
3.1 潰壩實驗配置 16
3.1.1 實驗渠槽 16
3.1.2 壓力計 18
3.1.3 高速攝影機 19
3.2 單擺顆粒撞擊實驗配置 19
3.2.1 實驗單擺 19
3.2.2 荷重計、信號放大器、數據擷取器及電源供應器 20
3.3 顆粒及撞擊物品介紹 23
3.3.1 顆粒粒徑 23
3.3.2 撞擊物品 23
3.4 實驗步驟 25
3.4.1 潰壩實驗 25
3.4.2 顆粒撞擊實驗 26
3.5 分析方法 27
3.5.1 潰壩實驗 27
3.5.2 顆粒撞擊實驗 28
第四章 實驗結果與討論 29
4.1 潰壩實驗結果 29
4.1.1 液面狀況 29
4.1.2 撞擊壓力 38
4.1.3 比較結果 54
4.1.4 湧浪形成 66
4.2 單擺顆粒撞擊實驗結果 71
4.2.1 受力狀況 71
4.2.2 接觸時間 73
4.2.3 消減撞擊力 74
4.2.4 比較 74
第五章 結論與建議 78
5.1 結論 78
5.1.1 潰壩實驗 78
5.1.2 顆粒單擺撞擊實驗 79
5.2 建議 79
參考文獻 80
參考文獻 [1] Arattano, M., Franzi, L. (2003) “On the evaluation of debris flows dynamics by means of mathematical models„ Nat Hazards Earth Syst Sci 3(6),539–544.
[2] Armanini, A., & Scotton, P. (1992) “Experimental analysis on dynamic impact of a debris flow on structure„6th INTERPRAEVENT Vol. 6.
[3] Armanini, A. (1997) “On the dynamic impact of debris flows„ In Recent Developments on Debris Flows, 208-226.
[4] Armanini, A., Larcher, M., & Odorizzi, M. (2011) “Dynamic impact of a debris flow front against a vertical wall„ In Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Padua, Italy 1041-1049.
[5] Egli. T. (2005) “Objektschutz gegen gravitative Naturgefahren„ Vereinigung Kantonaler Feuerversiche-rungen VKF.
[6] Eglit, M. E., Kulibaba, V. S., & Naaim, M. (2007) “Impact of a snow avalanche against an obstacle. Formation of shock waves„ Cold Regions Science and Technology, 50(1), 86-96.
[7] Hertz, H. (1882) “Ueber die Berührung fester elastischer Körper„ Journal für die reine und angewandte Mathematik, 92, 156-171.
[8] Hu, C., & Sueyoshi, M. (2010) “Numerical simulation and experiment on dam break problem„ Journal of Marine Science and Application, 9(2), 109-114.
[9] Hübl, J., Suda, J., Proske, D., Kaitna, R., & Scheidl, C. (2009) “Debris flow impact estimation„ In Eleventh international symposium on water management and hydraulic Engineering Vol. 1, 137-148.
[10] Ishikawa, N., Inoue,R., Hayashi, K., Hasegawa,Y.,&Mizuyama,T. (2008) “Experimental Approach on Measurement of Impulsive Fluid Force using Debris Flow Model„ Conference Proceedings of Interpraevent, Vol.1, 343-354.
[11] Ishikawa, N., Inoue, R., Beppu, M., Hasegawa, Y., & Mizuyama, T. (2010) “Dynamic load characteristics of debris flow model using different gravel size distribution„ Symposium Proceedings of INTERPRAEVENT 2010, 207-216.
[12] Ishikawa, N., Inoue, R., Beppu, M., Hasegawa, Y., & Mizuyama, T. (2012) “Dynamic response of steel specimen under debris flow surge model„ Symposium Proceedings of INTERPRAEVENT 2012, 761-770
[13] Johnson, K. L. (1987) “Contact mechanics„ Cambridge university press.
[14] Kawahara, S., & Muro, T. (2006) “Effects of dry density and thickness of sandy soil on impact response due to rockfall„ Journal of terramechanics, 43(3), 329-340.
[15] Kherkheulidze, I. (1969) “Estimation of basic characteristics of mudflows„ In: Floods and their computation, International Association of Scientific Hydrology Publication, Leningrad, vol 2, 940–948.
[16] Lee, T. H., Zhou, Z., & Cao, Y. (2002) “Numerical simulations of hydraulic jumps in water sloshing and water impacting„ Journal of Fluids Engineering, 124(1), 215-226.
[17] Lichtenhahn. C. (1973) “Die Berechnung von Sperren in Beton und Eisenbeton„ Kolloquium über Wildbach-sperren Mitteilungen der Forstlichen Bundesanstalt Wien. 91- 127.
[18] Lobovský, L., Botia-Vera, E., Castellana, F., Mas-Soler, J., & Souto-Iglesias, A. (2014) “Experimental investigation of dynamic pressure loads during dam break„ Journal of Fluids and Structures, 48, 407-434.
[19] Moriguchi, S., Borja, R. I., Yashima, A., & Sawada, K. (2009) “Estimating the impact force generated by granular flow on a rigid obstruction„ Acta Geotechnica, 4(1), 57-71.
[20] Pichler, B., Hellmich, C., & Mang, H. A. (2005) “Impact of rocks onto gravel design and evaluation of experiments„ International Journal of Impact Engineering, 31(5), 559-578.
[21] Pudasaini, S. P., & Kröner, C. (2008) “Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results„ Physical Review E, 78(4), 041308.
[22] Ritter, A.(1892)“Die Fortpflanzung der Wasserwellen„ Zeitschriftdes Vereines Deutscher Ingenieure, Vol.36, NO. 24,947–954.
[23] Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T., & Proske, D. (2013) “Analysing Debris-Flow Impact Models, Based on a Small Scale Modelling Approach„ Surveys in Geophysics, 34(1), 121-140.
[24] Spinewine, B., & Zech, Y. (2007) “Small-scale laboratory dam-break waves on movable beds„ Journal of Hydraulic Research, 45(sup1), 73-86.
[25] Stansby, P. K., Chegini, A., & Barnes, T. C. D. (1998) “The initial stages of dam-break flow„ Journal of Fluid Mechanics, 374, 407-424.
[26] Watanabe, M., Ikeya, H. (1981) “Investigation and analysis of volcanic mud flows on mount sakurajima„ japan. In:Erosion sediment transport measurement, International Association on Hydrology, Florence, Science Publication, vol 133, 245–256
[27] Wendeler, C. (2008) “Murgangsru¨ckhalt in wildba¨chen. grundlage zu planung und berechnung von flexiblen barrieren„ PhD thesis, Swiss Federal Institute of Technology Zurich.
[28] Zanuttigh, B., & Di Paolo, A. (2006) “Experimental analysis of the segregation of dry avalanches and implications for debris flows„ Journal of Hydraulic Research, 44(6), 796-806.
[29] Zanuttigh, B., & Lamberti, A. (2006) “Experimental analysis of the impact of dry avalanches on structures and implication for debris flows„ Journal of Hydraulic research, 44(4), 522-534.
[30] Zhang. S. (1993) “A comprehensive approach to the observation and prevention of debris flow in China„ Natural Hazards. 1-23.
[31] 水山高久(1979),「砂防對土石流衝擊力算定問題點」,新砂防第112號,40-43。
[32] 山口伊佐夫(1985),「現代林學講義」,砂防工學,71-80。
[33] 章書成(1996),「泥石流中巨石衝擊力計算」,泥石流觀測與研究,北京,科學出版社,67-72。
[34] 劉正川、陳永祥、劉玉雯、張義隆(1997),「利用消能衝撞理論探討防砂構造之緩衝特性」,第一屆土石流研討會論文集,83-91。
[35] 林炳森、林基源(1999),「土石流之衝擊力與防治工法介紹」,地工技術雜誌,第74期,67-80。
[36] 劉正川、陳永祥、劉玉雯(1999),「構造物加設緩衝材料之衝擊試驗研究」,第二屆土石流研討會論文集,291-298。
[37] 林清華(2000),「土石流攔阻工法構造物之力學分析研究」,國立中興大學水土保持學系碩士論文。
[38] 段錦浩、林明威、黃立勳 (2004),「廢輪胎材料對土石流撞擊力消能之研究」,中華水土保持學報,35(2),151-163。
[39] 胡桂勝、陳寧生、鄧明楓、盧陽(2012),「甘肅舟曲三眼峪溝泥石流粗大顆粒衝擊力特徵分析」,地球與環境,39(4),478-484。
[40] 袁進科,黃潤秋,裴向軍(2014),「滾石衝擊力測試研究」,岩土力學,35(1),48-54。
[41] 材料特性網站 http://www.matweb.com/
指導教授 周憲德 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明