博碩士論文 101322057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.21.231.245
姓名 張欽舜(CHIN-SHUN CHANG)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 顆粒流對垂直平板撞擊力之數值模擬
相關論文
★ 不均勻圓形橋墩之局部沖刷研究★ 砂礫河床之跌水沖刷分析
★ 土石流潛勢判定模式及土石壩滲流破壞之研究★ 港池污染擴散影響因子之探討
★ 不均勻橋墩及群樁基礎之局部沖刷研究★ 邊牆射流及尾檻對砂質底床之沖刷研究
★ 砂粒受水平振動行為之研究★ 土石流發生之水文特性探討
★ 不均勻橋墩與套環保護工法之局部沖刷研究★ 護坦及尾檻下游之局部沖刷分析
★ 橋台束縮與局部沖刷之研究★ 慢顆粒流之輸送帶實驗與影像分析
★ 均勻入滲時坡面地下水流之理論解析★ 尾檻設置對下游之局部沖刷效應
★ 二維斜坡顆粒流之輸送帶實驗與分析★ 斜坡土體滲流破壞引致土石流之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 撞擊力為土石流運動破壞結構物的重要因素之一。本研究在窄渠道內進行顆粒流崩塌模擬,並分析其流動物理特性及堆積機制,為了解顆粒流內部力量傳遞到板子上過程,使用PFC-3D程式進行數值模擬;數值模擬部分則以聚苯乙烯顆粒為模擬,並在底部黏上粗糙層顆粒,而堆積塊體高寬比a( )=1.4、顆粒填充高度Hf度作為主要對比參數,首先以模擬單顆粒試驗方式輸入參數的正確性,進而以撞擊力及塊體堆積等方式探討撞擊力對側板之影響。
本研究在PFC-3D數值模擬部分主要觀察其撞擊力、內部接觸力、不平衡力、動能、摩擦損耗之變化,其分析是以堆積高度、撞擊力變化、堆積型態為主。撞擊力變化在板距20cm情形最大撞擊力為0.7N、側板距30cm最大撞擊力為0.2N。
摘要(英) In this study, the impact forces acting on vertical walls by collapsing granular piles. DEM is explored by employing simulation PFC-3D. In the PFC-3D simulation, the observed impact force, inside contact force, unbalanced force, kinetic energy, friction energy loss are examined with different granular pile heights and wall location. The effect of stacking types and deposition are studied impact forces. In the PFC-3D numerical simulation found in the overall physical flow behavior is similar. The maximum impact force is 0.7N dependent on the
wall location.
關鍵字(中) ★ 顆粒流
★ 崩塌
★ 離散元素法
★ 撞擊力
關鍵字(英) ★ Granular flows
★ Collapse
★ DEM
★ impact force
★ PFC-3D
論文目次 第一章緒論 ........................................................................................................... 1
1.1 前言 .......................................................................................................... 1
1.2 研究目的 .................................................................................................. 2
1.3 研究方法 ................................................................................................. 3
1.4 研究架構 .................................................................................................. 3
第二章文獻回顧 ................................................................................................... 5
2.1 顆粒運動路徑 .......................................................................................... 5
2.2 濕顆粒崩塌實驗 ...................................................................................... 7
2.3 不同濃度下之崩塌模擬 .......................................................................... 8
2.4 數值模擬崩塌 .......................................................................................... 9
第三章 模擬配置與方法 ................................................................................... 14
3.1 模擬配置 ................................................................................................ 14
3.1.1 模擬渠槽 ...................................................................................... 14
3.1.1 不同落距濃度變化 ...................................................................... 14
3.2 顆粒材質介紹 ........................................................................................ 16
3.2.1 顆粒粒徑 ...................................................................................... 17
3.2.2 楊氏係數 Ε 與柏松比 ν ............................................................... 17
3.2.3 摩擦係數 μ ................................................................................... 18
3.2.4 回復係數 e ................................................................................... 19
3.3 PFC-3D(Particle Flow Code in three Dimensions) ................................ 20
3.3.1 顆粒運動定律 .............................................................................. 21
3.3.2 顆粒接觸力模型 .......................................................................... 22
3.4 分析步驟與方法 ................................................................................... 23
3.4.1 堆積高度 ...................................................................................... 26
第四章 模擬結果與討論 ................................................................................... 28 v

4.1 不同堆積條件下崩落歷程與變化 ........................................................ 28
4.1.1 不同落距條件下瞬時接觸力變化 .............................................. 31
4.2 PFC-3D 數值模擬 .................................................................................. 32
4.2.1 顆粒流平均接觸力 ...................................................................... 37
4.2.2 顆粒流平均不平衡力 .................................................................. 39
4.2.3 顆粒流動能 .................................................................................. 39
4.2.4 顆粒流摩擦耗能 .......................................................................... 40
4.2.5 顆粒撞擊力 ................................................................................. 41
4.2.6 顆粒不平衡力與撞擊力關係 ..................................................... 43
4.2.7 顆粒接觸力與撞擊力關係 ......................................................... 45
第五章 模擬結果與討論 ................................................................................... 47
5.1 結論 ........................................................................................................ 47
5.2 建議 ........................................................................................................ 47
參考文獻 48
參考文獻 [1]Azema, E., Descantes, Y., Roquet, N., Roux, J. N., and Chevoir, F, (2012) “Discrete simulation of dense flows of polyhedral grains down a rough inclined plane,” Phys. Rev. E86, Vol. 3, pp. 1-14.

[2]Campbell, C. S. and Brennen,C. E, (1982)“Chute flow of granular material:some computer simulation,” J. Fluid Mech., Vol. 52, pp. 72-178.

[3]Cruz, F. da, Emam, S., Prochnow, M., Roux, J. N., and Chevoir, F.,
90, (2005)“Rheophysics of dense granular flows: discrete simulation of plane shear flows,” Phys. Rev. E72, 021309.

[4]Cundall, P. A., and Strack, O. D. L, (1979)“A discrete numerical model for granular assembiles,” Géotechnique, pp. 47-65.

[5]Faug, T., Naaim, M., Bertrand, D., Lachamp, P., Naaim-Bouvet, F, (2003) “Varying dam height to shorten the run-out of dense avalanche flows: developing a scaling law from laboratory experiments,” Surv. Geophys., Vol. 24, pp. 555-568.

[6]Faug, T., Gauer, P., lied, K., and Naaim, M, (2008) “Overrun length of avalanches overtopping catching dams: Cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches,” J. Geophys. Res., Vol. 113, F03009.

[7]GDR MiDi, (2008) “On dense granular flows,” Eur. Phys. J. E, Vol.14, pp. 341-356.

[8]Harald, T., Wang, Y., Chiou, M. C, (2009) “Flow-obstacle interaction in rapid granular avalanchesDEM simulation and comparison with experiment,” Granular Matter, Vol. 11, pp. 209-220.

[9]Hákonardóttir, K. M., Hogg, A. J., Jóhannesson, T., Kern, M., and Tiefenbacher, F, (2003) “Large-scale avalanche braking mound and catching dam experiments with snow: A study of the airborne jet,” Surv. Geophys., Vol. 24, pp. 543-554.

[10]H.Teufelsbauer, Y.Wang, M.C. Chiou , W.Wu, (2009)“Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment.”Springer Verlag,209–220.

[11]H.Teufelsbauer, Y.Wang, S.P. Pudasaini, R.I. Borja, W.Wu, (2011) “DEM simulation of impact force excerted by granular flow on rigid structures.”Springer Verlag,119–133.

[12]L Lacaze , J.C. Phillips, and RR.Kerswell, (2008) “Planar collapse of a granular column: Experiments and discrete simulations.” Physics of Fluids, 508, 175-199.

[13]Labra C, Rojek J, Onate E, Zarate F, (2008) “Advances in discrete element modelling of underground excavations,” Acta Geotech ,Vol. 3, pp.317–322.

[14]Legros, F, (2002) “The mobility of long-runout landslides,” Eng. Geol. pp.301-331.

[15]Patra, A. K., Bauer, A. C., Nichita, C. C., Pitman, E.B., Sheridan, M.F., Bursik, M., Rupp, B., Webber, A., Stinton, A.J., Namikawa, L.M., and Renschler, C.S, (2005)“Parallel adaptive numerical simulation of dry avalanches over natural terrain,” J. Volcanol. Geotherm. Res., Vol. 139, pp. 1-21.

[16]Rondon, L., Pouliquen,O., Aussillous,P, (2010) “Granular collapse in a fluid: role of the initial volume fraction.” Bulletin of the American Physical Society, 63rd Annual Meeting of the APS Division of Fluid Dynamics, 55(16).

[17]Y.C. Chung, H.H. Liao, S.S. Hsiau, (2013) “Convection behavior of non-spherical particles in a vibrating bed: Discrete elementmodeling and experimental validation, Powder Technology 237, 53–66.

[18]唐昭榮、胡植慶、羅佳明、林銘郎,(2009年12月)“遽變式山崩之PFC-3D模擬初探-以草嶺與小林村為例,地工技術,第122期,第143-152頁。

[19]揚言誌,(2013)「離散元素法模擬於重力驅動顆粒流場之研究」中央大學土木工程學系碩士論文,桃園


[20]蔡輝平,(2013)「不同含水條件下堆積顆粒塊體崩塌過程之實驗與數值模擬」中央大學土木工程學系碩士論文,桃園

[21]蔣志宏,(2009)「分離元素法應用於土石流行為之研究」,朝陽科技大學營建工程學系教授,台中

[22]美國工程工具箱網站 http://www.engineeringtoolbox.com/

[23]小林村崩塌空拍圖 http://klpanblog.blogspot.tw/
指導教授 周憲德(Hsien-Ter Chou) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明