以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:32 、訪客IP:18.225.175.230
姓名 藍裕翔(Yu-xiang Lan) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 航照影像特徵輔助之半全域匹配 於數值地表模型建立 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 數值地表模型描述地形與地物之表面,是空間資訊處理中目標物三維重建之重要資料。考量其重要性,本研究針對建物區使用航照影像建構數值地表模型。文中就數值地表模型建構之兩個重要工作: (1) 獲取點雲資料及 (2) 模型化,提出方法及處理程序。
獲取資料的部分,使用多影像匹配技術來獲取三維點雲。因點雲的密度將影響數值地表模型細節之重建,故本研究採用密匹配的方式以獲取高密度三維點雲。常用之局部單目標窗匹配法中僅考慮匹配點附近的局部相似性,較缺乏區域性的連結,若能考慮區域相似性則能提高匹配結果的整體性。半全域法評估多個方向路徑上各點的相似性,並加入平滑度限制,同時考量區域及局部的影像特性,可望得到較穩定的結果,故使用於本研究中。然而平滑度限制在高程不連續處仍可能造成匹配不穩定。中左右之多視窗匹配方式考慮局部特徵條件,可望改善匹配結果。因此本研究結合半全域法與中左右視窗匹配法,可在建物邊緣處提升半全域法的匹配品質。相較於純像空間之匹配法,物空間導向之影像匹配從地元出發,連結對應之像點,並計算與主影像間之相似性。此種作法可處理不同解析度之影像,且利於多張影像匹配,故將整合於提出之匹配程序。
模型化的程序中,應該考慮建物邊緣的處理。影像中特徵線提供了良好的線索以找尋房屋邊緣。因此透過三維點雲與影像上的特徵線分析以判定房屋之輪廓。本研究萃取房屋輪廓,並以房屋輪廓當作約制精化數值地表模型。實驗成果顯示,結合半全域匹配法與中左右視窗匹配法可以達到互補之效果並提升匹配品質,另外以線特徵為約制精化模型的方法可以增進最後模型成果的品質。
摘要(英) Digital Surface Model (DSM), which describes the surface topography, is an important data source in geoinformatic applications. Considering its importance, this research uses aerial images to construct DSM for building areas. This study includes two major works:(1) point cloud generation and (2) surface modeling for DSM reconstruction.
It is a practical way to generate 3D point clouds by matching multiple images. Because the density of 3D points clouds may influence the constructed details of DSM, this research employs dense matching method to generate 3D points clouds. Matching methods using local single target window only consider local similarity near the matching points. It lacks global links to other pixels. The matching results could be improved, provided that the global similarity is considered. Semi-Global Matching (SGM) considers connected paths with smoothness constraints and combines local and global image information so it can get stable results. However, smoothness constraint might be unable to cope with the matching ambiguity in the area with surface discontinuity. Central-Left-Right Matching (CLRM), on the other hand, considers local feature constraint using multi-windows to increase matching quality around feature regions. Thus, the integration of CLR and SGM is proposed in this investigation. Object-based image matching starts from a groundel to connect related image pixels. Because object-based image matching strategy can connect multiple images with different image resolutions, it will be employed in this research.
In the DSM modeling, surface discontinuity should be taken into account. Feature lines in the images provide a valuable clue for the detection of possible surface discontinuity such as at building boundaries. Thus, 3D break lines might be determined by incorporating the point clouds and image feature lines. In this research, we extract building boundaries followed by the inclusion of those boundary lines as constraints to shape the DSM. The experimental results indicate that the integration of CLR and SGM can increase the quality of image matching. In addition, the proposed method that uses feature constraint to shape DSM can improve the quality of the generated DSM.
關鍵字(中) ★ 數值地表模型
★ 航空影像
★ 密匹配
★ 半全域匹配法
★ 中左右視窗匹配法
★ 物空間導向匹配關鍵字(英) ★ Digital Surface Model
★ Aerial Image
★ Dense Matching
★ Semi-Global Matching
★ Central-Left-Right Matching
★ Object-Based Image Matching論文目次 目錄
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 前言 1
1-1 研究動機與目的 1
1-2 研究方法與內容 6
第二章 研究方法 8
2-1 資料前處理 10
2-1-1 工作區域選定 10
2-1-2 邊緣偵測 10
2-1-3 點特徵增補 11
2-1-4 特徵主軸分析 12
2-2 物空間導向之多影像匹配 14
2-2-1 半全域匹配法 (SGM) 16
2-2-2 中左右視窗匹配法 (CLRM) 28
2-2-3 特徵輔助之半全域匹配法 (FASGM) 32
2-3 初始地表模型建立 35
2-3-1 迪式三角網建立 35
2-4 數值地表模型精化 37
2-4-1 房屋區偵測 37
2-4-2 房屋輪廓偵測 38
2-4-3 數值地表模型精化 39
第三章 研究成果與分析 41
3-1 實驗資料 41
3-1-1 影像資料 42
3-1-2 測試例資料 49
3-1-3 驗證之參考資料 54
3-2 實驗成果與分析 57
3-2-1 實驗使用參數 58
3-2-2 特徵萃取成果與分析 59
3-2-3 影像匹配成果與分析 63
3-2-4 相似性評估與分析之成果 71
3-2-5 初始地表模型建立之成果與分析 75
3-2-6 房屋區偵測與房屋輪廓偵測之成果與分析 81
3-2-7 數值地表模型精化之成果與分析 86
3-3 實驗總結 92
第四章 結論與建議 95
參考文獻 98
參考文獻 參考文獻
徐偉城,1999,空照彩色立體像對中人工建築物萃取之研究,碩士論文,國立中央大學土木工程研究所。
郭志奕,2005,結合光達資料與大比例尺向量圖重建三維建物模型,碩士論文,國立中央大學土木工程研究所。
高惠欣,2012,多重影像匹配結合光譜與紋理資訊偵測房屋區塊,碩士論文,國立中央大學土木工程研究所。
Baillard, C., and Zisserman, A., A plane sweep strategy for the 3D reconstruction of buildings from multiple images, International Archives of Photogrammetry and Remote Sensing, Vol. 33, Part B3, pp. 56-62, 2000.
Canny, J., A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp. 679-698, 1986.
Chen, L. C. and Lee, L. H., Progressive Generation of Control Frameworks for Image Registration, Photogrammetric Engineering and Remote Sensing, vol. 58, no. 9, pp. 1321-1328, 1992.
Goshtasby, A., Gage, S. H., and Bartholic, J. F., A Two-Stage Cross-Correlation Approach to Template Matching, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, no. 3, pp. 374-378, 1984.
Golias, N.A. and Dutton, R.W., Delaunay triangulation and 3D adaptive mesh generation, Finite Element in Analysis and Design, Vol. 25,pp.331-341, 1997.
Hough, P.V.C., Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959.
Hirschmüller, H., Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information, Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 807-814, June 2005.
Hirschmüller, H., Stereo Processing by Semi-Global Matching and Mutual Information, in IEEE Transactions of Pattern Analysis and Machine Intelligence, vol. 30, 328-341, 2008.
Hirschmüller, H., Buder, M., and Ernst, I., Memory Efficient Semi-Global Matching, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. I-3, 371-376, 2012.
Kolmogorov, V., and Zabih, R., Computing Visual Correspondence with Occlusions Using Graph Cuts, Proc. Int’l Conf. Computer Vision, vol. 2, pp. 508-515, 2001.
Kim, J., Kolmogorov, V., and Zabih, R., Visual Correspondence Using
Energy Minimization and Mutual Information, Proc. Int’l Conf. Computer Vision, Oct. 2003.
Klaus, A., Sormann, M., and Karner, K., Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure, Proc. Int’l Conf. Pattern Recognition, 2006.
Mass H.-G., Methods for Measuring Height and Planimetry Discrepancies in Airborne Laserscanner Data, Photogrammetric Engineering and Remote Sensing, Vol.68, No.9, pp. 933-940, 2002.
Noronha, S., and Nevatia, R., Detection and modeling of buildings from multiple aerial images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 5, pp. 501-518, 2001.
Otto, G. P., and Chau, T. K. W., A region-growing algorithm for matching of terrain images, Image Vision Computing, 7(2):83-94,1989.
Rosenholm, D., Multi-Point Matching Using the Least-Squares Technique for Evaluation of Three-Dimensional Models, Photogrammetric
Engineering and Remote Sensing, Vol. 53, No. 6, pp. 621-626, 1987.
Sirmacek, B., and Unsalan, C., Building Detection from Aerial Images using
Invariant Color Features and Shadow Information, Computer and Information Sciences, ISCIS ′08. 23rd International Symposium, IEEE International Conference, 2009.
Tao, H., Sawhney, H. S., and Kumar, R., A global matching framework for stereo computation, Computer Vision, ICCV 2001, Proceedings, Eighth IEEE International Conference, 2001.
Viola, P., and Wells, W. M., Alignment by Maximization of Mutual Information, Int’l J. Computer Vision, vol. 24, no. 2, pp. 137-154, 1997.
Van Meerbergen, G., Vergauwen, M., Pollefeys, M., and Van Gool, L., A Hierarchical Symmetric Stereo Algorithm Using Dynamic Programming, Int’l J. Computer Vision, vol. 47, nos. 1/2/3, pp. 275-285, Apr.-June 2002.
Wu, B., Zhang, Y., and Zhu, Q., Integrated point and edge matching on poor textural images constrained by self-adaptive triangulations, ISPRS Journal of Photogrammetry and Remote Sensing 68, 45-55, 2012.
Yang, Q., Wang, L.,Yang, R., Stewenius, H., and Nister, D., Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation and Occlusion Handling, Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2006.
Zhang, L., and Gruen, A., Multi-image matching for DSM generation from IKONOS imagery, ISPRS Journal o Photogrammetry & Remote Sensing, 60(3):195-211, 2006.
指導教授 陳良健 審核日期 2014-7-30 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare