參考文獻 |
Bandyopadhyay, S., Roy, A., and Das, S. (2001). Binding of garlic (Allium satium) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci. 161, 1025-1033.
Bardocz, S., Grant, G., Ewen, S. W., Duguid, T. J., Brown, D. S., Englyst, K., and Pusztai, A. (1995). Reversible effect of phytohaemagglutinin on the growth and metabolism of rat gastrointestinal tract. Gut 37, 353-360.
Barondes, S. H., Cooper, D. N., Gitt, M. A., and Leffler, H. (1994). Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 269, 20807-20810.
Becker, J. W., Reeke, G. N., Jr, Wang, J. L., Cunningham, B. A., and Edelman, G. M. (1975). The Covalent and Three-Dimensional Structure of Concanavalin A. J. Biol. Chem. 250, 1513-1524.
Binnington, K. C., Lehane, M. J., Beaton, C. D., Harrison, F. W., and Locke, M. (1998). The peritrophic membrane. In: Insecta. Micro Ana. Inverte. 11B, 747–758.
Bradford, M. M. (1976). A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254.
Brahms, S., Brahms, J., Spach, G., and Brack, A. (1977). Identification of ß ,ß -turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism. . Proc. Natl. Acad. Sci. U. S. A. 74, 3208-3212.
Brewer, C. F. (1997). Cross-linking activities of galectins and other multivalent lectins. Trends. Glycosci. Glycotechnol. 9, 155–165.
Brogdon, W. G., and McAllister, J. C. (1998). Insecticide resistance and vector control. Emerg. Infect. Dis. 4, 605-613.
Carlini, C. R., and Grossi-de-Sá, M. F. (2002). Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon. 40, 1515-1539.
Cerra, R. F., Haywood-Reid, P. L., and Barondes, S. H. (1984). Endogenous mammalian lectin localized extracellularly in lung elastic fibers. . J. Cell Biol. 98, 1580-1589.
Chakrabarty, R., Viswakarma, N., Bhat, S. R., Kirti, P. B., Singh, B. D., and Chopra, V. L. (2002). Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J. Biosci. 27, 495-502.
Chang, Y.-Y., Chen, S.-J., Liang, H.-C., Sung, H.-W., Lin, C.-C., and Huang, R.-N. (2004). The effect of galectin 1 on 3T3 cell proliferation on chitosan membranes. Biomaterials 25, 3603–3611.
Chen, N.-T., and Huang, R.-N. (2005). Characterization of the insecticidal activity of galectin-1 on Plutella xylostella.
Chen, Y., Baum, G., and Fromm, H. (1994). The 58-kilodalton calmodulin-binding glutamate decarboxylase is a ubiquitous protein in petunia organs and its expression is developmentally regulated. Plant Physiol. 106, 1381-1387.
Chi, H. (1997). Computer Program for the Probit Analysis; National Chung Hsing University: Taichung, Taiwan.
Chrispeels, M. J., and Raikhel, N. V. (1991). Lectins, lectin genes, and their role in plant defense. Plant Cell 3, 1-9.
Cooper, D. N., and Barondes, S. H. (1999). God must love galectins; He made so many of them. Glycobiology 9, 979-984.
Cooper, D. N., Massa, S. M., and Barondes, S. H. (1991). Endogenous muscle lectin inhibits myoblast adhesion to laminin. J. Cell Biol. 115, 1437-1448.
Davidowitz, G., D'Amico, L. J., and Nijhout, H. F. (2003). Critical weight in development of insect body size. Evol. Dev. 5, 188-197.
Ding, X., Gopalakrishnan, B., Johnson, L. B., White, F. F., Wang, X., Morgan, T. D., Kramer, K. J., and Muthukrishnan, S. (1998). Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res. 7, 77–84.
Donatucci, D. A., Liener, I. E., and J., G. C. (1987). Binding of navy bean (Phaseolus vulgaris) lectin to the intestinal cells of the rat and its effect on the absorption of glucose. J. Nutr. 117, 2154-2160.
Down, R. E., Gatehouse, A. M. R., Hamilton, W. D. O., and Gatehouse, J. A. (1996). Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trail. J. insect physiol. 42, 1035-1045.
Drickamer, K. (1988). Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 263, 9557-9560.
Einspahr, H., Parks, E. H., Suguna, K., Subramanian, E., and Suddath, F. L. (1986). The crystal structure of pea lectin at 3.0-A resolution. J. Biol. Chem. 261, 16518 - 16527.
Feyereisen, R. (1995). Molecular biology of insecticide resistance. Toxicol. Lett., 82-83,83-90.
Fitches, E., Gatehouse, A. M. R., and Gatehouse, J. A. (1997). Effect of snowdrop lectin (GNA) delievered via artificial diet and transgenic plants on the development of tomato moth (lacanobia oleracea) larvae in laboratory and glasshouse trails. J. Insect Physiol. 43, 727-739.
Fitches, E., and Gatehouse, J. A. (1998). A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea). J. Insect Physiol. 44, 1213-1224.
Fitches, E., Ilett, C., Gatehouse, A. M. R., Gatehouse, L. N., Greene, R., Edwards, J. P., and Gatehouse, J. A. (2001a). The effects of Phaseolus vulgaris erythro- and leucoagglutinating isolectins (PHA-E and PHA-L) delivered via artificial diet and transgenic plants on the growth and development of tomato moth (Lacanobia oleracea) larvae; lectin binding to gut glycoproteins in vitro and in vivo. J. Insect Physiol. 47, 1389-1398.
Fitches, E., Wilkinson, H., Bell, H., Bown, D. P., Gatehouse, J. A., and Edwards, J. P. (2004). Cloning, expression and functional characterisation of chitinase from larvae of tomato moth (Lacanobia oleracea): a demonstration of the insecticidal activity of insect chitinase. Insect Biochem. Mol. Biol. 34, 1037-1050.
Fitches, E., Woodhouse, S. D., Edwards, J. P., and Gatehouse, J. A. (2001b). In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action. J. Insect Physiol. 47, 777-787.
Gatehouse, A. M. R., Dewey, F. M., Dove, J., Fenton, K. A., and Pusrtai, A. (1984). Effect of seed lectins from Phaseolus vulgaris on the development of larvae of Callosobruchus maculatus; mechanism of toxicity. . J. Sci. Food Agric. 35, 373-380.
Gooday, G. W. (1997). The ever-widening diversity of chitinase. Carbohydr. Eur. 19, 18-22.
Gopalakrishnan, B., Muthukrishnan, S., and Kramer, K. J. (1995). Baculovirus-mediated expression of a Manduca sexta chitinase gene:properties of the recombinant protein. . Insect Biochem. Mol. Biol. 25, 255–265.
Gu, M., Wang, W., Song, W. K., Cooper, D. N., and Kaufman, S. J. (1994). Selective modulation of the interaction of a7b1 integrin with fibronectin andlaminin by L-14 lectin during skeletal muscle differentiation. J. Cell Sci. 107, 175-181.
Habibi, J., Backus, E. A., and Czapla, T. H. (1998). Subcellular effects and localization of binding sites of phytohemagglutinin in the potato leafhopper, Empoasca fabae (Insecta: Homoptera: Cicadellidae). Cell Tissue Res. 294, 561-571.
Habibi, J., Backus, E. A., and Huesing, J. E. (2000). Effects of phytohemagglutinin (PHA) on the structure of midgut epithelial cells and localization of its binding sites in western tarnished plant bug, Lygus hesperus Knight. J. Insect Physiol. 46, 611-619.
Harper, M. S., Hopkins, T. L., and Czapla, T. H. (1998). Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae. Tissue Cell 30, 166-176.
Held, G. A., Kawanishi, C. Y., and Huang, Y. S. (1989). Characterization of the parasporal inclusion of Bacillus thuringiensis subsp. kyushuensis. J. Bacteriol. 172, 481-483.
Hirabayashi, J., and Kasai, K. (1991). Effect of amino acid substitution by site-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa b-galactoside-binding lectin. J. Biol. Chem. 266, 23648-23653.
Ho, M.-R., Lou, Y.-C., Lin, W.-C., Lyu, P.-C., Huang, W.-N., and Chen, C. (2006). Human pancreatitis-associated protein forms fibrillar aggregates with a native-like conformation. J. Biol. Chem. 281, 33566-33576.
Ho, M. (1917). Life history of Plutella maculipennis, the diamond-back moth. J. Apicul. Res. 10, 1-10.
Hopkins, T. L., and Harper, M. S. (2001). Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch. Insect Biochem. Physiol. 47, 100-109.
Hughes, R. C. (2001). Galectins as modulators of cell adhesion. Biochimie. 83, 667-676.
Janzen, D. H., Juster, H. B., and Liener, I. E. (1976). lnsecticidal action of the phytohemagglutinin in black beans on a bruchid beetle. Science 192, 795-796.
Jouanin, L., Bonadé-Bottino, M., Girard, C., Morrot, G., and Giband, M. (1998). Transgenic plants for insect resistance. Plant Sci. 131, 1-11.
Kabir, K. E., Sugimoto, H., Tado, H., Endo, K., Yamanaka, A., Tanaka, S., and Koga, D. (2006). Effect of Bombyx Mori chitinase against Japanese Pine Sawyer (Monochamus alternatus) adult as a biopesticide. Biosci. Biotechnol. Biochem. 70, 219-229.
Kaur, M., Singh, K., Rup, P. J., Kamboj, S. S., Saxena, A. K., Sharma, M., Bhagat, M., Sood, S. K., and Singh, J. (2006). A tuber lectin from arisaema jacquemontii blume with anti-insect and anti-proliferative properties. J. Biochem. Mol. Biol. 39, 432-440.
Kordás, K., Burghardt, B., Kisfalvi, K., Bardocz, S., Pusztai, A., and Varga, G. (2000). Diverse effects of phytohaemagglutinin on gastrointestinal secretions in rats. J. Physiol. Paris 94, 31-36.
Kramer, K. J., and Muthukriahnan, S. (1997). Insect chitinase: Molecular biology and potential use as biopesticides. Insect Biochem. Mol. Biol. 27, 887-900.
Lehane, M. L. (1997). Peritrophic matrix structure and function. Annu. Rev. Entomol. 42, 525-550.
Liao, D.-I., Kapadia, G., Ahmed, H., Vasta, G. R., and Herzberg, O. (1994). Structure of S-lectin, a developmentally regulated vertebrate beta-galactosidebinding protein. Proc. Natl. Acad. Sci. U. S. A. 91, 1428– 1432.
López-Lucendo, M. F., Solís, D., André, S., Hirabayashi, J., Kasai, K., Kaltner, H., Gabius, H. J., and Romero, A. (2004). Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the ermodynamics of ligand binding. J. Mol. Biol. 343, 957-570.
Loris, R., Maes, D., Poortmans, F., Wyns, L., and Bouckaert, J. (1996). A structure of the complex between concanavalin A and methyl-3,6-di-O-(a-d-mannopyranosyl)-a-d-mannopyranoside reveals two binding modes. J. Biol. Chem. 271, 30614–30618.
Maeda, H., and Ishida, N. (1967). Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J. Biochem. 62, 276-278.
Martin, T., Frommer, W. B., Salanoubat, M., and Willmitzer, L. (1993). Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of suceose both during phloem loading and in sink organs. J. Plant 4, 367-377.
Mirelman, D., Galun, E., Sharon, N., and Lotan, R. (1975). lnhibition of fungal growth by wheat germ agglutinin. . Nature 256, 414-416.
Moiseeva, E. P., Spring, E. L., Baron, J. H., and de Bono, D. P. (1999). Galectin-1 modulates attachment, spreading and migration of cultured vascular smooth muscle cells via interactions with cellular receptors and components of extracellular matrix. . J. Vasc. Res. 36, 47-58.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. . Physiol. Plant 15, 473-479.
Naismith, J. H., and Field, R. A. (1996). Structural basis of trimannoside recognition by concanavalin A. J. Biol. Chem. 271, 972–976.
Nicholson, G. M. (2007). Fighting the global pest problem: Preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon. 49, 413-442.
Ozeki, Y., Matsui, T., Yamamoto, Y., Funahashi, M., Hamako, J., and Titani, K. (1995). Tissue fibronectin is an endogenous ligand for Galectin-1. Glycobiology 5, 255-261.
Pechan, T., Cohen, A., Williams, W. P., and Luthe, D. S. (2002). Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. U. S. A. 99, 13319-13323.
Peferoen, M. (1997). Progress and prospects for field use of Bt genes in crops. . Trends Biotech. 15, 173-177.
Peng, J., Zhong, J., and Granados, R. R. (1999). A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae. J. Insect Physiol. 45, 159-166.
Peters, W., and Heitmann, S. (1979). Formation and fine structure of peritrophic membranes in the earwig, Forficula auricularia. Entomol. Gen. 5, 241-254.
Peumans, W. J., and Van Damme, E. J. (1995). Lectins as plant defence proteins. . Plant Physiol. 109, 347-352.
Powell, K. S., Gatehouse, A. M. R., Hilder, V. A., and Gatehouse, J. A. (1993). Antimetabolic effects of plant-lectins and plant and fungal enzymes on the nymphal stages of 2 important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol. Exp. Appl. 66, 119-126.
Powell, K. S., Spence, J., Bharathi, M., Gatehouse, J. A., and Gatehouse, A. M. R. (1998). Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Sta°l). J. Insect Physiol. 44, 529-539.
Pusztai, A., Ewen, S. W., Grant, G., Brown, D. S., Stewart, J. C., Peumans, W. J., Van Damme, E. J., and Bardocz, S. (1993). Antinutritive effects of wheat-germ agglutinin and other Nacetylglucosamine-specific lectins. Br. J Nutr. 70, 313-321.
Pusztai, A., Ewen, S. W. B., Grant, G., Peumans, W. J., Damme, E. J. M., Coates, M. E., and Bardocz, S. (1995). Lectins and also bacteria modify the glycosylation of gut surface receptors in the rat. Glycoconj. J. 12, 22-35.
Ramkumar, R., and Podder, S. K. (2000). Elucidation of the mechanism of the interaction of sheep spleen Galectin-1 with splenocytes andits role in cell–matrix adhesion. J. Mol. Recognit. 13, 299-309.
Rao, R., Fiandra, L., Giordana, B., De Eguileor, M., Congiu, T., Burlini, N., Arciello, S., Corrado, G., and Pennacchio, F. (2004). AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Insect Biochem. Mol. Biol. 34, 1205-1213.
Reeke, G. N., Jr, Becker, J. W., and Edelman, G. M. (1975). The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure. J. Biol. Chem. 250, 1525 - 1547.
Richards, A. G., and Richards, P. A. (1977). The peritrophic membranes of insects. Ann. Rev. Entomol. 22, 219-240.
Rini, J. M., and Lobsanov, Y. D. (1999). New animal lectin structures. Curr. Opin. Struct. Biol. 9, 578-584.
Sadeghi, A., Broeders, S., De Greve, H., Hernalsteens, J. P., Peumans, W. J., Van Damme, E. J., and Smagghe, G. (2007). Expression of garlic leaf lectin under the control of the phloem-specific promoter Asus1 from Arabidopsis thaliana protects tobacco plants against the tobacco aphid (Myzus nicotianae). Pest Manag. Sci. 63, 1215-1223.
Sadeghi, A., Smagghe, G., Broeders, S., Hernalsteens, J. P., De Greve, H., Peumans, W. J., and Van Damme, E. J. (2008). Ectopically expressed leaf and bulb lectins from garlic (Allium sativum L.) protect transgenic tobacco plants against cotton leafworm (Spodoptera littoralis). Transgenic Res. 17, 9-18.
Saha, P., Majumder, P., Dutta, I., Ray, T., Roy, S. C., and Das, S. (2006). Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta. 223, 1329-1343.
Sauvion, N., Nardon, C., Febvay, G., Gatehouse, A. M. R., and Y., R. (2004). Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. J. Insect Physiol. 50, 1137-1150.
Schuler, T. H., Poppy, G. M., Kerry, B. R., and Denholm, I. (1998). Insect-resistant transgenic plants. Trends Biotech. 16, 168-175.
Shapiro, M., and Robertson, J. L. (1992). Enhancement of gypsy moth Lepidoptera Lymantriidae baculovirus activity by optical brighteners. J. Eton. Entomol. 85, 1120-1124.
Sharma, H. C., Sharma, K. K., and Crouch, J. H. (2004). Genetic transformation of crops for insect resistance: potential and limitations. Crit. Rev. Plant Sci. 23, 47-72.
Shelton, A. M., Tang, J. D., Roush, R. T., Metz, T. D., and Earle, E. D. (2000). Field tests on managing resistance to Bt-engineered plants. Nat. Biotechnol. 18, 339-342.
Shelton, A. M., Zhao, J. Z., and Roush, R. T. (2002). Economic, ecological, food safety, and social consequences of the development of Bt transgenic plants. Ann. Rev. Entomol. 47, 845-881.
Szewczyk, B., Hoyos-Carvajal, L., Paluszek, M., Skrzecz, I., and Lobo de Souza, M. (2006). Baculoviruses-- re-emerging biopesticides. Biotechnol. Adv. 24, 143-160.
Tellam, R. L., Wijffels, G., and Willadsen, P. (1999). Peritrophic matrix proteins. . Insect Biochem Mol Biol. 29, 87-101.
Terra, W. R. (2001). The origin and function of the insect peritrophic membrane and peritrophic gel. . Arch. Insect Biochem. Physiol. 47, 47-61.
Tribulatti, M. V., Mucci, J., Cattaneo, V., Agüero, F., Gilmartin, T., Head, S. R., and Campetella, O. (2007). Galectin-8 induces apoptosis in the CD4highCD8high thymocyte subpopulation. Glycobiology 17, 1404-1412.
Udedibie, A. B. I., and Carlini, C. R. (1998). Questions and answers to edibility problem of the Canavalia ensiformis seeds—a review. Anim. Feed Sci. Tech. 74, 95-106.
Van Frankenhuyzen, K., Gringorten, J. L., Milne, R. E., Gauthier, D., Pusztai, M., Brousseau, R., and Masson, L. (1991). Specificity of activated CryIA proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for defoliating Forest Lepidoptera. Appl. Environ. Microbiol. 57, 1650-1655.
Wang, P., and Granados, R. R. (1997a). An intestinal mucin is the target substrate for a baculovirus enhancin. Proc. Nat. Aca. Sci. (U.S.A.) 94, 6977-6982.
Wang, P., and Granados, R. R. (1997b). Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J. Biol. Chem. 272, 16663–16669.
Wang, P., and Granados, R. R. (2000). Calcofluor disrupts the midgut defense system in insects. Insect Biochem. Mol. Biol. 30, 135-143.
Wang, P., and Granados, R. R. (2001). Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch. Insect Biochem. Physiol. 47, 110-118.
Wang, P., Hammer, D. A., and Granados, R. R. (1994). Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects. J. Gen. Virol. 75, 1961-1967.
Wary, K. K., Mariotti, A., Zurzolo, C., and Giancotti, F. G. (1998). A requirment for caveolin-1 and associated kinase Fyn in integrin signalling and anchorage-dependent cell growth. . Cell 94, 6250-6254.
Wasano, K., Hirakawa, Y., and Yamamoto, T. (1990). Immunohistochemical localization of 14 kDa beta-galactoside-binding lectin in various organs of rat. Cell Tissue Res. 259, 43-49.
Whetstone, P. A., and Hammock, B. D. (2007). Delivery methods for peptide and protein toxins in insect control. Toxicon. 49, 579-596.
Wood, H. A., and Granados, R. R. (1991). Genetically engineered baculoviruses as agents for pest control. Annu. Rev. Microbiol. 45, 69-87.
Zhou, Q., and Cummings, R. D. (1993). L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch. Biochem. Biophys. 300, 6-17. |