博碩士論文 101324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.222.163.134
姓名 黃俞強(Yu-chiang Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為
(Second Virial Coefficient Measurements by Isothermal)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢★ 矽奈米線場效電晶體多點之核酸檢測研究
★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究
★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究
★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性
★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量
★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定
★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究★ 利用核適體作為訊號放大器於矽奈米線場效電晶體免疫感測器對生物標記物進行定量分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 第二維里係數(second virial coefficient,B22)為一熱力學參數,可以利用它來描述一稀薄蛋白質溶液中之兩分子間交互作用行為。藉由深入暸解蛋白質於不同溶液中之交互作用行為,將可對於蛋白質藥物於生產程序及蛋白藥物於配方( formulation )、藥導( delivery )上,提供關鍵之基礎與應用知識。
因此本研究我們利用恆溫滴定微卡計(Isothermal Titration Calorimetry, ITC)之理論與實驗設計,發展出量測第二維里係數之熱力學方法。並以肌紅蛋白( Myoglobin )與核醣核酸酶(Ribonuclease A)為研究之模型蛋白,來探討於不同溶液條件(pH值、鹽種類與鹽濃度)下之蛋白質與蛋白質交互作用行為。期望以 ITC獲得之研究結果與現今常被使用於量測第二維里係數之自我反應管柱層析法( Self Interaction Chromotagraphy,SIC)去進行比較。
由實驗結果可得知,其蛋白質分子間的作用力為多種作用力所貢獻,會對於不同溶液條件下之蛋白質作用行為有不同的影響。當溶液條件接近蛋白質pI值及低鹽濃度時,如果此蛋白質表面電荷分布均勻時,主要會因靜電排斥而造成分子間作用力為排斥力;相反地,當一蛋白質表面電荷分佈不均勻時,因ITC (蛋白質分子間交互作用之環境為溶液系統) 與SIC( 固定相上之蛋白質分子與移動相之蛋白質分子交互作用 )之量測第二維里係數方法的差異性,而造成所產生的偶極-偶極作用力會對第二維里係數有顯著的影響。另外,蛋白質分子在不同種鹽類溶液中的行為亦會受到鹽類之鹽析或鹽溶效應影響,且分子間行為符合Hofmeister Series之論述。本研究更進一步地,藉由利用其它關於蛋白質聚集(aggregation)及結晶(crystallization)實驗,如SEC等,以對ITC與SIC之研究結果進行驗證與討論。


摘要(英) Understanding the proteins self-interactions in solution system has great potential value due to its relevance in several research and applications fields, such as bio-separation、protein conformational disease and biopharmaceutical development. Particularly in several stages of biopharmaceutical process, protein aggregation has been observed frequently. Therefore, a priori prediction of protein pair potentials will provide crucial information for analyzing or screening suitable solution conditions. The second virial coefficient (B22), a thermodynamic parameter that characterizes the non-ideal solution behavior arising from two body solute-solute interactions, is a potential predictive tool. Determinations of B22 proteins have been extensively and mostly done by self-interaction chromatography (SIC). In this study, a novel platform, isothermal titration calorimetry (ITC), is established to describe the B22 of proteins with polarized surface charges distribution in aqueous solutions by means of measure the dilution enthalpy of protein solution. With the aim, B22 of Myoglobin and Ribonuclease A are measured by ITC in different solution conditions(pH、salt concentration、salt type), and compared to results obtained from self-interaction chromatography (SIC). Furthermore, size-exclusion chromatography and crystallization results offer the efficient way to let us verify whether or not proteins are stable in solution. Detailed discussion as following: in the research of Myoglobin, the protein-protein interactions are repulsive with increasing salt concentration in ITC and SIC system. Moreover, different kinds of salt in solution affect the proteins’ behavior, which are consistent with Hofmeister Series. On the other hand, the research of Ribonuclease A shows that protein-protein interactions change from repulsive to attractive with increasing NaCl concentration in ITC system. Furthermore, comparing the experimental results from ITC and SIC, we discover the adverse results as the pH value of solution is close to the pI value of protein and at lower salt concentration. Under this circumstance, the charge distribution on protein surface is anisotropic. Meanwhile, B22 measurement in SIC system is not convincing because the immobilized proteins can’t move freely. On the contrary, we can describe protein behaviors in solution precisely by ITC measurement, because of the degrees of freedom of protein are not restricted. Additionally, at the aforementioned conditions, the less aggregation of Ribonuclease A is detected from the size-exclusion chromatography measurements. Consequently, we successfully establish a platform to measure B22 of proteins with isotropic or anisotropic surface charges distribution in ITC system.
關鍵字(中) ★ 第二維里係數
★ 恆溫滴定微卡計
★ 自我反應管柱層析
關鍵字(英)
論文目次 中文摘要 I
AbstractIII
致謝 V
目錄 VI
圖目錄 IX
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 4
2.1 第二維里係數 (Second virial coefficient) 4
2.1.1 維里方程式及第二維里係數之簡介 4
2.1.2 第二維里係數之應用 6
2.2 蛋白質與蛋白質間的交互作用力及其應用相關性 8
2.3 鹽離子水合效應及Hofmeister 序列 14
2.4 第二維里係數之量測方法 16
2.4.1 自我反應管柱層析 ( Self-interaction Chromatography,SIC ) 16
2.4.1.1 實驗方法之簡介 16
2.4.1.2 第二維里係數之理論計算 18
2.4.1.3 蛋白質於SIC之固定化 23
2.4.1.4 第二維里係數於SIC量測之缺點 25
2.4.2 恆溫滴定微卡計 ( Isothermal Titration Calorimetry,ITC ) 27
2.4.2.1 實驗方法之簡介 27
2.4.2.2 第二維里係數之理論計算 28
2.4.3 其它量測方法 33
2.5 SIC於蛋白質分子間作用力之量測 38
2.6 恆溫滴定微卡計之介紹與應用 44
第三章 實驗藥品、儀器設備與方法 48
3.1 實驗藥品 48
3.2 儀器設備 50
3.3 實驗步驟 51
3.3.1 溶液配製 51
3.3.2 恆溫滴定微卡計實驗 52
3.3.2.1 操作步驟 52
3.3.2.2 稀釋熱之量測 54
3.3.3 螢光光譜儀實驗 55
3.3.4 圓二色光譜儀實驗 55
3.3.5 尺寸大小排除層析實驗 55
3.3.6 批式(Batch)結晶實驗 56
第四章 結果與討論 57
4.1 恆溫滴定微卡計量測蛋白質分子間之作用力 57
4.1.1 肌紅蛋白 (Myoglobin)之研究 57
4.1.2 核醣核酸酶 (Ribonuclease A)之研究 64
4.2 藉由尺寸大小排除層析法(Size-exclusion chromatography)於蛋白質聚集之分析 71
4.2.1 肌紅蛋白之研究 71
4.2.2 核醣核酸酶之研究 74
4.3 批式結晶實驗(Batch crystallization experiment) 81
4.3.1 肌紅蛋白之研究 81
4.3.2 核醣核酸酶之研究 83
第五章 結論 85
第六章 參考文獻 87

參考文獻 1. C.A. Haynes, K. Tamura, H.R. Korfer, H.W. Blanch and J.M. Prausnitz, Thermodynamic properties of aqueous .alpha.-chymotrypsin solution from membrane osmometry measurements. Journal of Chemical Physics, 1992. 96: p. 905-912.
2. M.A. Yousef, R. Datta, and V.G.J. Rodgers, Understanding Nonidealities of the Osmotic Pressure of Concentrated Bovine Serum Albumin. Journal of colloid and interface science, 1998. 207: p. 273-282.
3. J. T. Edsall, H. Edelhoch, R. Lontie and P. R. Morrison, Light Scattering in Solutions of Serum Albumin: Effects of Charge and Ionic Strength. Journal of the American Chemical Society, 1950. 72(10): p. 4641-4656.
4. O.D. Velev, E.W. Kaler, and A.M. Lenhoff, Protein Interactions in Solution Characterized by Light and Neutron Scattering Comparison of Lysozyme and Chymotrypsinogen. Biophysical Journal, 1998. 75: p. 2682–2697.
5. A. Tardieu, A.L. Verge, M. Malfois,F. Bonnete´, S. Finet, M. Rie` s-Kautt and L. Belloni, Proteins in solution: from X-ray scattering intensities to interaction potentials. Journal of Crystal Growth, 1999. 196: p. 193-203.
6. C. Gripon, L. Legrand, I. Rosenman, O. Vidal, M.C. Robert and F. Boub, Lysozyme-lysozyme interactions in under- and super-saturated solutions: a simple relation between the second virial coefficients in H2O and D2O. Journal of Crystal Growth, 1997. 178: p. 575-584.
7. J. Behlke and O. Ristau, Analysis of the thermodynamic non-ideality of proteins by sedimentation equilibrium experiments. Biophysical Chemistry, 1999. 76: p. 13-23.
8. J. Bloustine, V. Berejnov, and S. Fraden, Measurements of Protein-Protein Interactions by Size Exclusion Chromatography. Biophysical Journal, 2003. 85: p. 2619-2623.
9. J.J. Valente, B.G. Fryksdale, D.A. Dale, A.L. Gaertner and C.S. Henry, Screening for physical stability of a Pseudomonas amylase using self-interaction chromatography. Anal Biochem, 2006. 357(1): p. 35-42.
10. S.Y. Patro and T.M. Przybycien, Self-interaction chromatography: A tool for the study of protein–protein interactions in bioprocessing environments. Biotechnology and Bioengineering, 1996. 52: p. 193-203.
11. P.M. Tessier, S.D. Vandrey, B.W.Berger, R. Pazhianur, S.I. Sandler and A.M. Lenhoff, Self-interaction chromatography a novel screening method for rational protein crystallization. Acta Crystallographica, 2002. 58: p. 1531-1535.
12. N. Rakel, K. Schleining, F. Dismer and J. Hubbuch, Self-interaction chromatography in pre-packed columns: a critical evaluation of self-interaction chromatography methodology to determine the second virial coefficient. Journal of Chromatogr A, 2013. 1293: p. 75-84.
13. A. Quigley, J.Y. Heng, J.M. Liddell and D.R. Williams, The accurate measurement of second virial coefficients using self-interaction chromatography: experimental considerations. European Journal of Pharmmaceutics Biopharmaceutics, 2013. 85(3 Pt B): p. 1103-11.
14. R.W. Payne, R. Nayar, R. Tarantino, S.D. Terzo, J. Moschera, J. Di, D. Heilman, B. Bray, M.C. Manning and C.S. Henry, Second virial coefficient determination of a therapeutic peptide by self-interaction chromatography. Biopolymers, 2006. 84(5): p. 527-33.
15. S.V. Sule, J.K. Cheung, V. Antochshuk, A.S. Bhalla, C. Narasimhan, S. Blaisdell, M. Shameem and P.M. Tessier, Solution pH that minimizes self-association of three monoclonal antibodies is strongly dependent on ionic strength. Mol Pharm, 2012. 9(4): p. 744-51.
16. W.Y. Chen, C.S. Kuo, and D.Z. Liu, Determination of Second Virial Coefficient of the interaction between microemulsion droplets by microcalorimetry. Langmuir, 2000. 16: p. 300-302.
17. B.L. Neal, D. Asthagiri, and A.M. Lenhoff, Molecular Origins of Osmotic Second Virial Coefficients of Proteins. Biophysical Journal, 1998. 75: p. 2469-2477.
18. B.L. Neal, D. Asthagiri, O.D. Velev, A.M. Lenhoff and E.W. Kaler, Why is the osmotic second virial coefficient related to protein crystallization ? Journal of Crystal Growth, 1999. 196: p. 377-387.
19. J.G.S. Ho, A.P.J. Middelbergr, P. Ramage and H.P. Kocher, The likelihood of aggregation during protein renaturation can be assessed using the second virial coefficient. Protein Science, 2003. 12(4): p. 708-16.
20. A.K. Pavlou and J.M. Reichert, Recombinant protein therapeutics—success rates,market trends and values to 2010. Nature Biotechnology, 2004. 22: p. 1513-1519.
21. S.J. Shire, Formulation and manufacturability of biologics. Current Opinion in Biotechnology, 2009. 20(6): p. 708-14.
22. W. Simon, Predicting Long-Term Storage Stability of Therapeutic Proteins, in Pharmaceutical Technology 2013. p. 42-48.
23. A.S. Rosenberg, Effects of Protein Aggregates An Immunologic Perspective. the American Association of Pharmaceutical Scientists, 2006. 8(3): p. E501-E507.
24. S. Schmidt, D. Havekost, K. Kaiser, J. Kauling and H.J. Henzler, Crystallization for the downstream processing of proteins. Engineering in Life Sciences, 2005. 5(3): p. 273-276.
25. A. Geogre and W.W. Wilson, Predicting Protein Crystallization from a Dilute Solution Property. Acta Crystallographica, 1994. 50: p. 361-365.
26. F. Chiti and C.M. Dobson, Protein misfolding, functional amyloid, and human disease. The Annual Review of Biochemistry 2006. 75: p. 333-366.
27. D.A. Barrett, G.M. Power, M.A. Hussain, I.D. Pitfield, P.N. Shaw and M.C. Davies, Protein interactions with model chromatographic stationary phases constructed using self-assembled monolayers. Journal of Separation Science, 2005. 28(5): p. 483-91.
28. J.A. Queiroz, C.T. Tomaz, and J.M.S. Cabra, Hydrophobic interaction chromatography of proteins. Journal of Biotechnology, 2001. 87: p. 143-159.
29. K.A. Dill, Dominant Forces in Protein Folding. Biochemistry, 1990. 29: p. 7133-7155.
30. N.A.M. Besseling, Theory of Hydration Forces between Surfaces. Langmuir, 1997. 13: p. 2113-2122.
31. L.O. Narhi, Y. Kita, and T. Arakawa, Hydrophobic interaction chromatography in alkaline pH. Analytical biochemistry, 1989. 182(2): p. 266-270.
32. J.J. Valente, K.S. Verma, M.C. Manning, W.W. Wilson, and C.S. Henry, Second virial coefficient studies of cosolvent-induced protein self-interaction. Biophys Journal, 2005. 89(6): p. 4211-8.
33. F. Hofmeister, Zur Lehre von der Wirkung der Salze. Archiv für experimentelle Pathologie und Pharmakologie, 1888. 25(1): p. 1-30.
34. P. Thiyagarajan, D.J. Chaiko, and R.P. Hjelm, A Neutron Scattering Study of Poly(ethylene glycol) in Electrolyte Solutions. Macromolecules, 1995. 28: p. 7730-7736.
35. P.M. Tessier, A.M. Lenhoff, and S.I. Sandler, Rapid Measurement of Protein Osmotic Second Virial Coefficients by Self-Interaction Chromatography. Biophysical Journal, 2002. 82: p. 1620-1631.
36. D.A. McQuarrie, Statistical Mechanics. 1976, Harper Collins: New York.
37. C.A. Teske, H.W. Blanch, and J.M. Prausnitz, Measurement of Lysozyme−Lysozyme Interactions with Quantitative Affinity Chromatography. Journal of Physical Chemistry B, 2004. 108: p. 7437-7444.
38. F. Rusmini, Z. Zhong, and J. Feijen, Protein Immobilization Strategies for Protein Biochips. Biomacromolecules, 2007. 8: p. 1775-1789.
39. P.M. Tessier, H.R. Johnson, R. Pazhianur, B.W. Berger, J.L. Prentice, B.J. Bahnson, S.I. Sandler and A.M. Lenhoff, Predictive crystallization of ribonuclease A via rapid screening of osmotic second virial coefficients. PROTEINS: Structure, Function, and Genetics, 2003. 50: p. 303-311.
40. H. Bajaj, V.K. Sharma, and D.S. Kalonia, Determination of second virial coefficient of proteins using a dual-detector cell for simultaneous measurement of scattered light intensity and concentration in SEC-HPLC. Biophysical Journal, 2004. 87(6): p. 4048-55.
41. J. Hubbuch and M.R. Kula, Confocal laser scanning microscopy as an analytical tool in chromatographic research. Bioprocess and biosystems engineering, 2008. 31(3): p. 241-59.
42. S.L. Huang, F.Y. Lin, and C.P. Yang, Microcalorimetric studies of the effects on the interactions of human recombinant interferon-alpha2a. European Journal of Pharmaceutical Sciences, 2005. 24(5): p. 545-52.
43. P.J. Wyatt, Light scattering and the absolute characterization. 1993. 272: p. 1-40.
44. W.W. Wilson, Light scattering as a diagnostic for protein crystal growth—A practical approach. Journal of Structural Biology, 2003. 142(1): p. 56-65.
45. C. Tanford and J.D. Hauenstein, Hydrogen Ion Equilibria of Ribonuclease. Journal of the American Chemical Society, 1956. 78: p. 5287-5297.
46. M.W. Freyer and E.A. Lewis, Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions. 2008. 84: p. 79-113.
47. S.N. Olsen, Applications of isothermal titration calorimetry to measure enzyme kinetics and activity in complex solutions. Thermochimica Acta, 2006. 448(1): p. 12-18.
48. O.D. Velev, E.W. Kaler, and A.M. Lenhoff, Protein Interactions in Solution Characterized by Light and Neutron Scattering :Comparison of Lysozyme and Chymotrypsinogen. Biophysical Journal, 1998. 75: p. 2682-2697.
49. D.K. Chou, R. Krishnamurthy, M.C. Manning, T.W. Randolph and J.F. Carpenter, Physical stability of albinterferon-alpha(2b) in aqueous solution: effects of conformational stability and colloidal stability on aggregation. Journal of Pharmaceutical Sciences, 2012. 101(8): p. 2702-2719.
50. A.A. Cordes, C.W. Platt, J.F. Carpenter and T.W. Randolph, Selective domain stabilization as a strategy to reduce fusion protein aggregation. Journal of Pharmaceutical Sciences, 2012. 101(4): p. 1400-1409.
51. A.C. Dumetz, A.M. Snellinger-O′brien, E.W. Kaler and A.M. Lenhoff, Patterns of protein protein interactions in salt solutions and implications for protein crystallization. Protein Science, 2007. 16(9): p. 1867-77.

指導教授 陳文逸(Wen-yih Chen) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明