摘要(英) |
In recent years, Taiwan′s climate changing, typhoon rainfall intensity increased, paving facility load is too large, resulting in frequent flooding around. Permeable pavement allows rainwater infiltration and reduce runoff flow, delaying flood, flood control and groundwater recharge, very consistent with the concept of sustainable use of water resources. In addition, both permeable pavement evaporate water retention function and moisture in the pavement surface temperature is significantly lower than the general conventional dense graded asphalt concrete pavement, effective help to the city temperature regulation. Permeable pavement has not been widely used for general traffic and urban roads, so this research trial paved roads paved roads in urban areas, the use of porous asphalt concrete on the surface layer, the bottom is divided into pervious concrete, low-density pervious concrete and C-40 graded gravel, used to assess the ability of different materials permeable.
The results are as follows, a natural rainfall analysis, simulated rainfall and water retention test section Jieke found three (C-40 graded gravel) the best, followed by cross-section a (pervious concrete), the latter two sections (low-density porous concrete). Second, permeable pavement can effectively reduce rainfall intensity moment when the heavy rain, can slow the burden of drainage facilities. Third, by the time this study was to measure the amount of the maximum temperature and CFD simulation pavement building indoor and outdoor temperatures are lower than in other sections among the three temperatures. Fourth, permeable pavement surface temperatures are lower than the general traditional grading, can reduce the indoor temperature.
Taiwan in recent years gradually extended heavy flooding situation and the ambient temperature rises, the study found that permeable pavement when rain has reduced rainfall intensity, slow drainage, water retention and lower the temperature, the proposed flood prone areas can be laid permeable pavement. |
參考文獻 |
1. Alderson, A. (1996). The design of open graded asphalt. Australian Asphalt Pavement Association, CR C5151.
2. CARNIELO, E., & ZINZI, M. (2013). Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand. Building and Environment, 60, 56-65.
3. Cooley Jr, L. A., J. W. Brumfield, et al. (2009). Construction and maintenance practices for permeable friction courses. Washington, D.C.
4. Ferguson, B., Fisher, K., Golden, J., Hair, L., Haselbach, L., Hitchcock, D., Waye, D. (2008). Reducing Urban Heat Islands: Compendium of Strategies-Cool Pavements.
5. Guangxi,Xiong(Bill)Yu。(2014).Computer-Aided Design of Thermal Energy Harvesting System across Pavement Structure.
6. Haase, D., & Nuissl, H. (2007). Does urban sprawl drive changes in the water balance and policy?: The case of Leipzig (Germany) 1870–2003. Landscape and Urban Planning, 80(1), 1-13.
7. Haselbach, Liv. (2009). Pervious Concrete and Mitigation of the Urban Heat Island Effect. Paper presented at the Transportation Research Board 88th Annual Meeting.
8. I.J.Huddleston, H.Zhou and R.G.Hicks, (1991)〝Performance Evaluation of Open-Graded Asphalt Concrete Mixtures Used in Oregon〞AAPT Vol.60.
9. Isenring, T., Koster, H., & Scazziga, I. (1990). Experiences with porous asphalt in Switzerland. Transportation Research Record(1265), 41-53.
10. Iwata, H., Watanabe, T., & Saito, T. (2002). Study on the Performance of Porous Asphalt Pavement on Winter Road Surface Conditions.
11. Karaca, M., Tayanç, M., & Toros, H. n. (1995). Effects of urbanization on climate of Istanbul and Ankara. Atmospheric Environment, 29(23), 3411-3421.
Lin, J.-D., Hsu, C.-Y., Su, Y.-M. (2013). Field Assessment in Permeability and Surface Run-Off of Permeable Pavement. Applied Mechanics and Materials, 361-363, 1503-1506.
12. Lin, T.-P., Ho, Y.-F., & Huang, Y.-S. (2007). Seasonal effect of pavement on outdoor thermal environments in subtropical Taiwan. Building and Environment, 42(12), 4124-4131.
13. Ruiz, A., Alberola, R., Perez, F., & Sanchez, B. (1990). Porous asphalt mixtures in Spain. Transportation Research Record(1265).
14. Rajib B.Mallick,Bao-Liang Chen (2014).Reduction of pavement High Temperature with the Use of Thermal Insulation Layer High ReFlectiVity Surface.
15. Shin, A. H.-C., & Kodide, U. (2012). Thermal conductivity of ternary mixtures for concrete pavements. Cement and Concrete Composites, 34(4), 575-582.Synnefa, A., Karlessi, T., Gaitani, N., Santamouris, M., Assimakopoulos, D., & Papakatsikas, C. (2011). Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Building and Environment, 46(1), 38-44.
16. Stempihar, Jeffrey J, Pourshams-Manzouri, Tina, Kaloush, Kamil E, & Rodezno, Maria Carolina. (2012). Porous Asphalt Pavement Temperature Effects for Urban Heat Island Analysis. Transportation Research Record: Journal of the Transportation Research Board, 2293(1), 123-130.
17. Van Der Zwan, J. T., Goeman, T., Gruis, H., Swart, J., & Oldenburger, R. (1990). Porous asphalt wearing courses in the Netherlands: State of the art review.
1. Andika Citraningrum (2012),「透水性鋪面使用對於鋪面上方空氣溫度及建築能源使用之影響」,國立中央大學,碩士論文。
2. Putri Adhitana Paramitha (2013),「透水性鋪面與傳統鋪面在高溫夏季情況下對氣溫與能源消耗之影響-以國立中央大學圖書館為例」,國立中央大學,碩士論文。
3. 內政部建築研究所(2012)「綠建築評估手冊-基本型」,第一版,內政部建築研究所,新北市。
4. 余濬 (2004),「降雨強度之推算」。
5. 吳政松(2005),「透水鋪面對工程環境之影響效益分析」,國立中央大學,碩士論文。
6. 李魁鵬、林憲德、林立人、郭曉青、陳子謙,臺灣四大都會區都市熱島效應實測解析(2)—夏季都市熱島時空分佈特性之初步解析,建築學報,第31卷,pp.75-90,1999年。
7. 社団法人日本道路協会 (2007),「透水性舗装ガイドブック2007」,社団法人日本道路協会。
8. 凃允捷(2004),「營建廢棄物混凝土與磁磚應用於透水鋪面之性能實驗評估」,國立海洋大學,碩士論文。
9. 柯亙重、張書芸 (2004),「高雄地區夏季地表氣溫分布之觀測解析」,環境與世界,(9),83-106。
10. 孫振義(2008),運用遙測技術於都市熱島效應之研究,國立成功大學建築研究所博士論文。
11. 徐正杰 (2003),「都市環境綠化與透水效果對於微氣候之影響-以花蓮市為例」,國立東華大學碩士論文。
12. 徐震宇 (2008)「不同透水性鋪面材料對鋪面溫度影響之探討」,國立中央大學,碩士論文。
13. 徐震宇 (20132)「透水瀝青混凝土鋪面滲透保水性能及熱行為之研究」,國立中央大學,博士論文,
14. 張子瑩 (2010),「應用遙測影像於地表熱通量平衡之研究」,國立中央大學,博士論文。
15. 許柏謙(2013),「混凝土再生粒料應用於透水性鋪面底層適用性分析」,國立中央大學,碩士論文。
16. 郭柏巖,(2000),「都市公園微氣候觀測解析-以台南市公園為例」,成功大學建築研究所碩士論文,。
17. 陳志恆、楊顯整 (2005),「節能材料之開發與使用技術」,工業污染防治,(94),35-145。
18. 陳建旭 (2011),「多孔隙及石膠泥瀝青混凝土鋪面養護手冊委託技術服務期中報告」,交通部臺灣區國道高速公路局,台中。
19. 陳建旭等人(2012),「多孔隙瀝青混凝土功能性及經濟性評估」,台灣公路工程,第38卷,第12期,31-67。
20. 陳建旭等人,「多孔隙瀝青混凝土功能性及經濟性評估」,台灣公路工程,第38卷,第12期,第31-67頁,2012年。
21. 彭純美 (2008),「人性化透水性鋪面成效評估之研究~以縣道及鄉道人行道為例」,國立中央大學,碩士論文。
22. 菊池俊浩 (2004),「車道透水性舗装実用化に向けての取組み」特集・透・排水性舗装,アスファルト,(47),20-26。
23. 黃宇菘 (2005),「戶外鋪面對建築外部熱環境影響之研究—以高速公路南投服務區為例」朝陽科技大學,碩士論文。
24. 黃慧敏 (2005),「鋪面熱島效應模式建立及應用研究」,國立臺灣海洋大學,碩士論文。
25. 楊家愷 (2006),「應用遙感探測方法探討中尺度城鄉土地利用對環境溫度之影響」,國立宜蘭大學,碩士論文。
26. 葉銘欽 (2006),「透水性鋪面專家諮詢系統建置之研究」,國立中央大學,碩士論文。
27. 葉銘欽 (2011),「以微觀影像解析多孔隙瀝青混凝土耐久特性之研究」,國立中央大學,博士論文。
28. 鄒克萬、黃書偉 (2007),「都市土地利用變遷對自然環境衝擊之空間影響分析」, JOURNAL OF GEOGRAPHICAL SCIENCE,(48),1-18。
29. 劉人慈 (2013),「焚化爐底碴再利用於透水混凝土之研究」,國立中央大學,碩士論文。
30. 歐陽嶠暉 (2001),「都市環境學」,詹氏書局,台北市。
31. 簡婉芸 (2007),「透水性鋪面對基地保水量敏感度之分析」,國立中央大學,碩士論文。
32. 魏嘉慧 (2013),「市區道路透水性鋪面設計方法評估」,國立中央大學,碩士論文。 |