博碩士論文 983204036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.119.133.138
姓名 徐學賢(Hsueh-hsien Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 微銲點之微結構研究與同步輻射X光量測於先進構裝之應用
(The Study of Microstructure in Microbumps and the Application of In Situ Synchrotron Radiation X-ray on Advanced Electronic Packaging)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 三維積體電路為近年來廣為討論的製造技術,不單是因為有可能打破存在三十年之摩爾定律,更具備了縮小體積、降低功耗、提升可靠性等特性。整體而言,若能善用3D IC之諸多優勢,將有助消費性電子與各式可攜式裝置朝向更加輕薄短小且高效能的未來邁進。在極小的構裝尺度裡,直徑不到20 微米的微凸塊接點,體積只有過往球陣列式凸塊的千分之一,其接點微結構組織往往直接影響的接點之可靠度行為。因此,不同以往的微結構組織變化也成為近年來微凸塊構裝技術的重要議題。本研究的第一部分將利用Cu pillar/Sn cap與Ni/Sn2.5Ag/Ni微凸塊,觀察微凸塊中的合金接點經過熱時效處理後之微結構組織的變化。在此有限的銲料體積內,Cu-Sn與Ni-Sn介金屬化合物隨著熱時效處理時間的增加而逐漸的佔滿整個接點。介金屬化合物生成的同時也大量消耗了金屬墊層。對此,我們將以動力學的方式來探討微凸塊中介金屬生長與金屬墊層消耗的相依性,並嘗試利用此相依性以預測不同時間點下的微結構組織。此外,在較短熱時效處理的Ni/Sn2.5Ag/Ni微凸塊裡,除了介金屬化合物的成長之外,同時觀察到些許的微孔洞生成於介金屬相的邊界。當熱時效處理時間增長後,可在微凸塊的中間發現較大規模的裂縫。此裂縫的生成很有可能造成接點接合不完全,而大幅降低接點之可靠度。對於構裝元件,構裝體內因材料間性質差異更可能讓封裝晶片產生更嚴重的失效行為。過往的量測方式卻受限於試片尺度、儀器解析度等,本研究的第二部分將利用同步輻射X光源之高解析度與高強度等特色,針對某特定待測區域進行量測。此非破壞性量測法使用,更能呈現量測條件對於試片的真實影響。本研究的第二部分將利用同步輻射X光臨場量測法,臨場量測die-to-interposer與embedded substrate構裝體內之Si晶片在不同溫度下之熱應變行為。此兩者構裝體內的高分子材料與Si晶片間熱膨脹係數差異而造成的熱致應力,會因為構裝架構的不同而呈現不同的熱應變分布。同時利用了數值模擬的方式,進一步證實臨場量測對於電子構裝之可信度。
摘要(英) Due to the demand for high performance and slim volume chips, 3D packaging has great potential over the coming decade. Micro-joints are a crucial element in manufacturing multi-function devices. The reduction in the dimensions of devices has led to a 1000-fold reduction in the volume of solder joints. It could reveal a different failure mechanism between microbump and conventional BGA bump. The first part of the thesis examines the microstructure of microbumps produced using Cu pillar/Sn cap and Ni/Sn2.5Ag/Ni systems following thermal treatment. Both reactive systems led to the formation of intermetallic compounds (IMCs) throughout the entire joint area due to the limited volume of solder. It also led to the continuous consumption of IMCs formed by under-bump metallization (UBM) during annealing treatment. These observations were taken into account in the prediction of the kinetics behavior associated with the formation of IMCs and UBM consumption in the structure of microbumps undergoing thermal treatment. We also observed microvoids surfacing at the boundaries between the constituent elements of Ni/Sn2.5Ag/Ni microbumps. Thermal aging at 150 °C for 250 h resulted in the relaxation of stress induced by the growth of IMCs and led to the propagation of cracks across the middle of the bumps.
The minute size of modern electronic devices has limited the methods available for the analysis of dimensions and other physical properties. The high resolution and high intensity of synchrotron X-ray radiation makes it a good candidate for monitoring deformation behavior in devices with complex packaging. This study succeeded in performing in situ measurement of the strain distribution in Si dies using synchrotron X-ray diffraction. The test vehicles included a die-to-interposer and an embedded substrate. It was observed that CTE mismatches between polymer-based materials and Si dies promoted the formation of stress in the dies following variations in temperature, which could compromise the structure of the devices. Numerical simulations were utilized to prove the feasibility of using in situ measurement in the evaluation of electronic packaging.
關鍵字(中) ★ 微凸塊微結構
★ 介金屬預測
★ 臨場應變量測
★ 同步輻射X光
★ 先進電子構裝
關鍵字(英) ★ Microbump microstructure
★ IMC prediction
★ In Situ strain measurement
★ Synchrotron radiation X-ray
★ Advanced electronic packaging
論文目次 Abstract (in Chinese)…………………………………………………………………………………………I
Abstract (in English)………………………………………………………………………………………II
Acknowledgement………………………………………………………………………………………………………IV
Contents……………………………………………………………………………………………………………………………V
List of Figures………………………………………………………………………………………………………VI
List of Tables…………………………………………………………………………………………………………IX
1 Introduction……………………………………………………………………………………………………………1
1.1 Background……………………………………………………………………………………………………………1
1.2 Characterization of microbumps………………………………………………………4
1.3 Interfacial reaction in microbump………………………………………………6
1.4 Microvoids formation in the Microbump……………………………………9
1.5 Warpage issue for electronic packaging………………………………12
2. Motivation……………………………………………………………………………………………………………16
2.1 Microstructrue evolution of microbumps………………………………16
2.2 In situ x-ray measurement of advanced packaging………17
3. Experimental………………………………………………………………………………………………………18
3.1 Cu pillar/Sn Cap and Ni/Sn2.5Ag/Ni microbumps……………18
3.2 Microvoids observation in Ni/Sn2.5Ag/Ni microbumps19
3.3 Samples of advanced packaging………………………………………………………20
3.4 In situ X-ray measurement…………………………………………………………………24
4. Results and Discussion……………………………………………………………………………26
4.1 Cu/Sn and Ni/Sn2.5Ag/Ni microbump system…………………………26
4.1.1 Microstructure of Sn pillar/Cu cap and Ni/Sn2.5Ag/Ni microbumps……………………………………………………………………………………………………………………26
4.1.2 Kinetic analysis of the microstructure in the Sn pillar/Cu cap and Ni/Sn2.5Ag/Ni microbumps………………………………33
4.1.3 Prediction of IMC during annealing……………………………………40
4.2 Microbump for defect evaluation…………………………………………………46
4.3 In-situ X-ray measurement for advanced packaging……53
4.3.1 Strain distribution of Si die in die-to-interposer
………………………………………………………………………………………………………………………………………………53
4.3.2 Strain distribution of Si die in embedded substrate ………………………………………………………………………………………………………………………………………………60
5. Conclusions…………………………………………………………………………………………………………67
5.1 Microstructure evaluation in microbumps……………………………67
5.3 Strain measurement of Si die in advanced packaging68
References……………………………………………………………………………………………………………………69
參考文獻 [1] J. U. Knickerbocker, “3D Integration & Packaging Challenges with through-silicon-vias (TSV)”, (2012).
[2] K. Sakuma, P. S. Andry, C. K. Tsang, S. L. Wright, B. Dang, C. S. Patel, B. C. Webb, J. Maria, E. J. Sprogis, S. K. Kang, R. J. Polastre, R. R. Horton, and J. U. Knickerbocker, “3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnections”, IBM Journal of Research and Development 52, 611 (2008).
[3] H. Y. You, Y. S. Lee, S. K. Lee, and J. S. Kang, “Reliability of 20μm micro bump interconnects”, Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 608 (2011).
[4] D. Amir and C. E. Bauer, “3D Packaging, Interconnection & Assembly”, (2013).
[5] A. Ostmann, A. Neumann, S. Weser, E. Jung, L. Bottcher, and H. Reichl, “Realization of a stackable package using chip in polymer technology”, Polymers and Adhesives in Microelectronics and Photonics, 2002. POLYTRONIC 2002. 2nd International IEEE Conference on, 160 (2002).
[6] H. Braunisch, S. N. Towle, R. D. Emery, H. Chuan, and G. J. Vandentop, “Electrical performance of bumpless build-up layer packaging”, Electronic Components and Technology Conference, 2002. Proceedings. 52nd, 353 (2002).
[7] K. S. Kao, S. T. Wu, Y. Po. Hung, T. C. Chang, R. S. Cheng, and T. H. Chen, “Application of numerical analysis to the reliability assessment of a novel package on package (PoP) structure for memory stacking”, Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International, 1 (2010).
[8] P. Palm, J. Moisala, A. Kivikero, R. Tuominen, and A. Iihola, “Embedding active components inside printed circuit board (PCB) - a solution for miniaturization of electronics”, Advanced Packaging Materials: Processes, Properties and Interfaces, 2005. Proceedings. International Symposium on, 1 (2005).
[9] B. Dang, S. L. Wright, P. S. Andry, E. J. Sprogis, C. K. Tsang, M. J. Interrante, B. C. Webb, R. J. Polastre, R. R. Horton, C. S. Patel, A. Sharma, J. Zheng, K. Sakuma, and J. U. Knickerbocker, “3D chip stacking with C4 technology”, IBM Journal of Research and Development 52, 599 (2008).
[10] N. Koyanagi, H. Kurino, K. W. Lee, K. Sakuma, N. Miyakawa, and H. Itani, “Future system-on-silicon LSI chips”, Ieee Micro 18, 17 (1998).
[11] K. Sakuma, K. Sueoka, S. Kohara, K. Matsumoto, H. Noma, T. Aoki, Y. Oyama, H. Nishiwaki, P. S. Andry, C. K. Tsang, J. U. Knickerbocker, and Y. Orii, “IMC bonding for 3D interconnection”, Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 864 (2010).
[12] K. N. Chen, S. H. Lee, P. S. Andry, C. K. Tsang, A. W. Topol, Y. M. Lin, J. Q. Lu, A. M. Young, I. Meikei, and W. Haensch, “Structure, Design and Process Control for Cu Bonded Interconnects in 3D Integrated Circuits”, Electron Devices Meeting, 2006. IEDM ′06. International, 1 (2006).
[13] A. Munding, H. Hübner, A. Kaiser, S. Penka, P. Benkart, and E. Kohn, “Cu/Sn Solid–Liquid Interdiffusion Bonding” in “Wafer Level 3-D ICs Process Technology”, edited by C. S. Tan, R. J. Gutmann, and L. R. Reif (Springer US, 2008), 1 (2008).
[14] T. Laurila, V. Vuorinen, and J. K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Materials Science and Engineering: R: Reports 49, 1 (2005).
[15] P. S. Ho, G. T. Wang, M. Ding, J. H. Zhao, and X. Dai, “Reliability issues for flip-chip packages”, Microelectronics Reliability 44, 719 (2004).
[16] K. Zeng and K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Materials Science and Engineering: R: Reports 38, 55 (2002).
[17] C. E. Ho, S. C. Yang, and C. R. Kao, “Interfacial reaction issues for lead-free electronic solders” in “Lead-Free Electronic Solders” (Springer US, 2007), 155 (2007).
[18] A. Klumpp, R. Merkel, P. Ramm, J. Weber, and R. Wieland, “Vertical System Integration by Using Inter-Chip Vias and Solid-Liquid Interdiffusion Bonding”, Japanese Journal of Applied Physics 43, L829 (2004).
[19] R. Johannessen, M. Taklo, and M. F. Sunding, “SnAg Microbumps for MEMS-Based 3-D Stacks”, Advanced Packaging, IEEE Transactions on 32, 683 (2009).
[20] S. Bader, W. Gust, and H. Hieber, “Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems”, Acta Metallurgica et Materialia 43, 329 (1995).
[21] H. Y. Son, G. J. Jung, B. J. Park, and K. W. Paik, “A Study on the Thermal Reliability of Cu/SnAg Double-Bump Flip-Chip Assemblies on Organic Substrates”, Journal of Electronic Materials 37, 1832 (2008).
[22] B. J. Kim, G. T. Lim, J. Kim, K. Lee, Y. B. Park, H. Y. Lee, and Y. C. Joo, “Intermetallic Compound Growth and Reliability of Cu Pillar Bumps Under Current Stressing”, Journal of Electronic Materials 39, 2281 (2010).
[23] G. T. Lim, B. J. Kim, K. Lee, J. Kim, Y. C. Joo, and Y. B. Park, “Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps”, Journal of Electronic Materials 38, 2228 (2009).
[24] R. Labie, P. Limaye, K. W. Lee, C. J. Berry, E. Beyne, and I. De Wolf, “Reliability testing of Cu-Sn intermetallic micro-bump interconnections for 3D-device stacking”, Electronic System-Integration Technology Conference (ESTC), 2010 3rd, 1 (2010).
[25] J. F. Li, P. A. Agyakwa, and C. M. Johnson, “Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process”, Acta Materialia 59, 1198 (2011).
[26] Y. W. Wang, S. H. Chae, R. Dunne, Y. Takahashi, K. Mawatari, P. Steinmann, T. Bonifield, J. Tengfei, J. Im, and P. S. Ho, “Effect of intermetallic formation on electromigration reliability of TSV-microbump joints in 3D interconnect”, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 319 (2012).
[27] Y. W. Wang, S. H. Chae, J. Im, and P. S. Ho, “Kinetic study of intermetallic growth and its reliability implications in Pb-free Sn-based microbumps in 3D integration”, Electronic Components and Technology Conference (ECTC), 2013 IEEE 63rd, 1953 (2013).
[28] F. Y. Ouyang, W. C. Jhu, and T. C. Chang, “Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits”, Journal of Alloys and Compounds 580, 114 (2013).
[29] J. R. Lloyd, N. A. Connelly, X. He, K. J. Ryan, and B. H. Wood, “Fast diffusers in a thermal gradient (solder ball)”, Microelectronics Reliability 50, 1355 (2010).
[30] L. Meinshausen, K. Weide-Zaage, and H. Frémont, “Migration induced material transport in Cu–Sn IMC and SnAgCu microbumps”, Microelectronics Reliability 51, 1860 (2011).
[31] C. C. Lee, P. J. Wang, and J. S. Kim, “Are Intermetallics in Solder Joints Really Brittle?”, Electronic Components and Technology Conference, 2007. ECTC ′07. Proceedings. 57th, 648 (2007).
[32] K. J. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, Journal of Applied Physics 97, 024508 (2005).
[33] T. C. Chiu, K. Zeng, R. Stierman, D. Edwards, K. Ano, and K. N. Tu, “Effect of thermal aging on board level drop reliability for Pb-free BGA packages”, Electronic Components and Technology Conference, 2004. Proceedings. 54th, 1256 (2004).
[34] C. F. Tseng and J. G. Duh, “The influence of Pd on growth behavior of a quaternary (Cu,Ni,Pd)6Sn5 compound in Sn–3.0Ag–0.5Cu/Au/Pd/Ni–P solder joint during a liquid state reaction”, Journal of Materials Science 48, 857 (2012).
[35] C. F. Tseng, T. K. Lee, G. Ramakrishna, K. C. Liu, and J. G. Duh, “Suppressing Ni3Sn4 formation in the Sn–Ag–Cu solder joints with Ni–P/Pd/Au surface finish”, Materials Letters 65, 3216 (2011).
[36] I. T. Wang, J. G. Duh, C. Y. Cheng, and J. Wang, “Interfacial reaction and elemental redistribution in Sn3.0Ag0.5Cu–xPd/immersion Au/electroless Ni solder joints after aging”, Materials Science and Engineering: B 177, 278 (2012).
[37] J. Y. Kim and Y. Jin, “Effects of residual impurities in electroplated Cu on the Kirkendall void formation during soldering”, Applied Physics Letters 92, 092109 (2008).
[38] J. Yu and J. Y. Kim, “Effects of residual S on Kirkendall void formation at Cu/Sn–3.5Ag solder joints”, Acta Materialia 56, 5514 (2008).
[39] Y. W. Wang, Y. W. Lin, and C. R. Kao, “Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates”, Microelectronics Reliability 49, 248 (2009).
[40] Y. J. Chen, C. K. Chung, C. R. Yang, and C. R. Kao, “Single-joint shear strength of micro Cu pillar solder bumps with different amounts of intermetallics”, Microelectronics Reliability 53, 47 (2013).
[41] N. S. Bosco and F. W. Zok, “Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system”, Acta Materialia 52, 2965 (2004).
[42] Y. C. Chan, P. L. Tu, C. W. Tang, K. C. Hung, and J. K. L. Lai, “Reliability studies μBGA solder joints-effect of Ni-Sn intermetallic compound”, IEEE Transactions on Advanced Packaging 24, 25 (2001).
[43] H. Y. Chuang, W. M. Chen, W. L. Shih, Y. S. Lai, and C. R. Kao, “Critical new issues relating to interfacial reactions arising from low solder volume in 3D IC packaging”, Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 1723 (2011).
[44] H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li, and C. R. Kao, “Critical Concerns in Soldering Reactions Arising from Space Confinement in 3-D IC Packages”, Ieee Transactions on Device and Materials Reliability 12, 233 (2012).
[45] H. Y. Chuang, J. J. Yu, M. S. Kuo, H. M. Tong, and C. R. Kao, “Elimination of voids in reactions between Ni and Sn: A novel effect of silver”, Scripta Materialia 66, 171 (2012).
[46] C. C. Chuang, T. F. Yang, J. Y. Juang, Y. P. Hung, C. J. Zhan, Y. M. Lin, C. T. Lin, P. C. Chang, and T. C. Chang, “Influence of underfill materials on the reliability of coreless flip chip package”, Microelectronics Reliability 48, 1875 (2008).
[47] A. Hamada, T. Furusawa, N. Saito, and E. Takeda, “A new aspect of mechanical stress effects in scaled MOS devices”, Electron Devices, IEEE Transactions on 38, 895 (1991).
[48] S. Savastiouk, O. Siniaguine, and M. DiOrio, “Moore’s law the next dimension”, Adv. Packag. 7, 55 (1998).
[49] K. Takahashi, M. Umemoto, N. Tanaka, K. Tanida, Y. Nemoto, Y. Tomita, M. Tago, and M. Bonkohara, “Ultra-high-density interconnection technology of three-dimensional packaging”, Microelectronics Reliability 43, 1267 (2003).
[50] T. Alander, I. Suominen, P. Heino, and E. Ristolainen, “Improving the fatigue life of a bare die flip chip by thinning”, Soldering & Surface Mount Technology 15, 8 (2003).
[51] S. Katsurayama and H. Tohmyoh, “Effect of Warpage of Flip Chip Packages Due to the Underfill Encapsulating Process on Interconnect Reliability”, Journal of Electronic Packaging 131, 031005 (2009).
[52] K. Verma, D. Columbus, and B. Han, “Development of real time/variable sensitivity warpage measurement technique and its application to plastic ball grid array package”, Electronics Packaging Manufacturing, IEEE Transactions on 22, 63 (1999).
[53] J. Stopford, A. Henry, D. Manessis, N. Bennett, K. Horan, D. Allen, J. Wittge, L. Boettcher, A. Cowley, and P. J. McNally, “Non-destructive X-Ray mapping of strain & warpage of die in packaged chips”, Microelectronics and Packaging Conference (EMPC), 2011 18th European, 1 (2011).
[54] S. A. Gee, W. F. Van Den Bogert, and V. R. Akylas, “Strain-gauge mapping of die surface stresses”, Components, Hybrids, and Manufacturing Technology, IEEE Transactions on 12, 587 (1989).
[55] R. Darveaux, L. T. Hwang, A. Reisman, and I. Turlik, “Thermal stress analysis of a multichip package design”, Electronic Components Conference, 1989. Proceedings., 39th, 668 (1989).
[56] T. Akio and I. Nobuyuki, “Nondestructive Warpage Measurements of LSI Chips in a Stacked System in Package by Using High-Energy X-ray Diffraction”, Japanese Journal of Applied Physics 49, 04DB03 (2010).
[57] J. Kanatharana, J. J. Pérez-Camacho, T. Buckley, P. J. McNally, T. Tuomi, M. O. Hare, D. Lowney, W. Chen, R. Rantamäki, L. Knuuttila, and J. Riikonen, “Mapping of mechanical stresses in silicon substrates due to lead–tin solder bump reflow process via synchrotron x-ray topography and finite element modelling”, Journal of Physics D: Applied Physics 36, A60 (2003).
[58] P. J. McNally, J. Kanatharana, B. H. W. Toh, D. W. McNeill, A. N. Danilewsky, T. Tuomi, L. Knuuttila, J. Riikonen, J. Toivonen, and R. Simon, “Geometric linewidth and the impact of thermal processing on the stress regimes induced by electroless copper metallization for Si integrated circuit interconnect technology”, Journal of Applied Physics 96, 7596 (2004).
[59] A. T. Wu, C. Y. Tsai, C. L. Kao, M. K. Shih, Y. S. Lai, H. Y. Lee, and C. S. Ku, “In Situ Measurements of Thermal and Electrical Effects of Strain in Flip-Chip Silicon Dies Using Synchrotron Radiation X-rays”, Journal of Electronic Materials 38, 2308 (2009).
[60] A. T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao, “Electromigration-induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction”, Applied Physics Letters 85, 2490 (2004).
[61] A. S. Budiman, S. M. Han, J. R. Greer, N. Tamura, J. R. Patel, and W. D. Nix, “A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray microdiffraction”, Acta Materialia 56, 602 (2008).
[62] A. S. Budiman, G. Lee, M. J. Burek, D. Jang, S. M. J. Han, N. Tamura, M. Kunz, J. R. Greer, and T. Y. Tsui, “Plasticity of indium nanostructures as revealed by synchrotron X-ray microdiffraction”, Materials Science and Engineering: A 538, 89 (2012).
[63] A. S. Budiman, H. A. S. Shin, B. J. Kim, S. H. Hwang, H. Y. Son, M. S. Suh, Q. H. Chung, K. Y. Byun, N. Tamura, M. Kunz, and Y. C. Joo, “Measurement of stresses in Cu and Si around through-silicon via by synchrotron X-ray microdiffraction for 3-dimensional integrated circuits”, Microelectronics Reliability 52, 530 (2012).
[64] G. Xu, F. Geng, Q. Huang, L. Luo, and J. Zhou, “Warpage and Reliability of a 3D-MCM on an Embedded Substrate With Multiple Interconnection Method”, IEEE Transactions on Components and Packaging Technologies 33, 571 (2010).
[65] B. Han, “Thermal stresses in microelectronics subassemblies: Quantitative characterization using photomechanics methods”, Journal of Thermal Stresses 26, 583 (2003).
[66] M. O. Alam and Y. C. Chan, “Solid-state growth kinetics of Ni3Sn4 at the Sn–3.5Ag solder∕Ni interface”, Journal of Applied Physics 98, 123527 (2005).
[67] M. He, Z. Chen, and G. Qi, “Solid state interfacial reaction of Sn–37Pb and Sn–3.5Ag solders with Ni–P under bump metallization”, Acta Materialia 52, 2047 (2004).
[68] X. Hu and Z. Ke, “Growth behavior of interfacial Cu–Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging”, Journal of Materials Science: Materials in Electronics 25, 936 (2014).
[69] C. P. Huang, C. Chen, C. Y. Liu, S. S. Lin, and K. H. Chen, “Metallurgical reactions of Sn-3.5Ag solder with various thicknesses of electroplated Ni/Cu under bump metallization”, Journal of Materials Research 20, 2772 (2005).
[70] S. Ishikawa, E. Hashino, T. Kono, and K. Tatsumi, “IMC Growth of Solid State Reaction between Ni UBM and Sn–3Ag–0.5Cu and Sn–3.5Ag Solder Bump Using Ball Place Bumping Method during Aging”, Materials Transactions 46, 2351 (2005).
[71] R. Labie, W. Ruythooren, and J. Van Humbeeck, “Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions”, Intermetallics 15, 396 (2007).
[72] M. Mita, M. Kajihara, N. Kurokawa, and K. Sakamoto, “Growth behavior of Ni3Sn4 layer during reactive diffusion between Ni and Sn at solid-state temperatures”, Materials Science and Engineering: A 403, 269 (2005).
[73] N. Mookam and K. Kanlayasiri, “Evolution of Intermetallic Compounds between Sn-0.3Ag-0.7Cu Low-silver Lead-free Solder and Cu Substrate during Thermal Aging”, Journal of Materials Science & Technology 28, 53 (2012).
[74] J. Y. Song, J. Yu, and T. Y. Lee, “Analysis of Phase Transformation Kinetics by Intrinsic Stress Evolutions During the Isothermal Aging of Amorphous Ni(P) and Sn/Ni(P) Films”, Journal of Materials Research 19, 1257 (2011).
[75] C. K. Wong, J. H. L. Pang, J. W. Tew, B. K. Lok, H. J. Lu, F. L. Ng, and Y. F. Sun, “The influence of solder volume and pad area on Sn–3.8Ag–0.7Cu and Ni UBM reaction in reflow soldering and isothermal aging”, Microelectronics Reliability 48, 611 (2008).
[76] J. W. Yoon and S. B. Jung, “Growth kinetics of Ni3Sn4 and Ni3P layer between Sn–3.5Ag solder and electroless Ni–P substrate”, Journal of Alloys and Compounds 376, 105 (2004).
[77] J. W. Yoon, C. B. Lee, D. U. Kim, and S. B. Jung, “Reaction diffusions of Cu6Sn5 and Cu3Sn intermetallic compound in the couple of Sn-3.5Ag eutectic solder and copper substrate”, Metals and Materials International 9, 193 (2003).
[78] W. M. Tang, A. Q. He, Q. Liu, and D. G. Ivey, “Solid state interfacial reactions in electrodeposited Cu/Sn couples”, Transactions of Nonferrous Metals Society of China 20, 90 (2010).
[79] M. Yang, H. T. Chen, X. Ma, M. Y. Li, Y. Cao, and J. Kim, “Solid-state interfacial reaction of eutectic Sn3.5Ag and pure tin solders with polycrystalline Cu substrate”, Journal of Materials Science 49, 3652 (2014).
[80] R. W. Yang, Y. W. Chang, W. C. Sung, and C. Chen, “Precipitation of large Ag3Sn intermetallic compounds in Sn2.5Ag microbumps after multiple reflows in 3D-IC packaging”, Materials Chemistry and Physics 134, 340 (2012).
[81] H. Y. You, Y. C. Hwang, J. W. Pyun, Y. G. Ryu, and H. S. Kim, “Chip package interaction in micro bump and TSV structure”, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 315 (2012).
[82] S. L. Wright, C. K. Tsang, J. Maria, B. Dang, R. Polastre, P. Andry, and J. Knickerbocker, “Micro-interconnection reliability: Thermal, electrical and mechanical stress”, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 1278 (2012).
[83] M. L. Huang, T. Loeher, A. Ostmann, and H. Reichl, “Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders”, Applied Physics Letters 86, 181908 (2005).
[84] V. I. Dybkov, “Effect of Dissolution on the Ni3Sn4 Growth Kinetics at the Interface of Ni and Liquid Sn-Base Solders”, Solid State Phenomena 138, 153 (2008).
[85] C. S. Liu and C. E. Ho, “Role of Ni and Cu metallization dissolution in various Ni/solder/Cu jointing sequences”, Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International, 1 (2010).
[86] J. W. Yoon, B. I. Noh, and S. B. Jung, “Effects of third element and surface finish on interfacial reactions of Sn–Ag–xCu (or Ni)/(Cu or ENIG) solder joints”, Journal of Alloys and Compounds 506, 331 (2010).
[87] D. R. Frear, S. N. Burchett, H. S. Morgan, and J. H. Lau, “The Mechanics of Solder Alloy Interconnects (Van Nostrand Reinhold, New York)”, (1994).
[88] T. Eckert, O. Bochow-Ness, A. Middendorf, K. Tetzner, and H. Reichl, “Condition indicators for reliability monitoring of microsystems”, Electronics System-Integration Technology Conference, 2008. ESTC 2008. 2nd, 1035 (2008).
[89] T. Takahashi, S. Komatsu, H. Nishikawa, and T. Takemoto, “High-Temperature Resistant Intermetallic Compound Joints for Si Chips and Cu Substrates”, Journal of Electronic Materials 39, 2274 (2010).
[90] G. T. Galyon and L. Palmer, “An integrated theory of whisker formation: the physical metallurgy of whisker formation and the role of internal stresses”, Electronics Packaging Manufacturing, IEEE Transactions on 28, 17 (2005).
[91] J. H. Lau and S. W. Lee, “Effects of Underfill Delamination and Chip Size on the Reliability of Solder Bumped Flip Chip on Board”, The International Journal of Microcircuits and Electronic Packaging 23, 33 (2000).
[92] J. Cheng, S. Chen, P. T. Vianco, and J. C. M. Li, “Quantitative analysis for hillocks grown from electroplated Sn film”, Journal of Applied Physics 107, 074902 (2010).
[93] E. Chason, N. Jadhav, W. L. Chan, L. Reinbold, and K. S. Kumar, “Whisker formation in Sn and Pb–Sn coatings: Role of intermetallic growth, stress evolution, and plastic deformation processes”, Applied Physics Letters 92 (2008).
[94] S. Kim and J. Yu, “Recrystallization-induced void migration in electroplated Cu films”, Scripta Materialia 67, 312 (2012).
[95] K. N. Tu, C. Chen, and A. T. Wu, “Stress analysis of spontaneous Sn whisker growth” in “Lead-Free Electronic Solders” (Springer US, 2007), 269 (2007).
[96] Z. K. A. Jalar, R. Rasid, S. Abdullah, and N.K. and Othman, “The Effect of Underfill Fillet Geometry to Die Edge Stress for Flip Chip Packaging”, Advanced Materials Research 148, 1108 (2010).
[97] K. P. Wang, Y. Y. Huang, A. Chandra, and K. X. Hu, “Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies”, IEEE Transactions on Components and Packaging Technologies 23, 309 (2000).
[98] M. Modi, C. McCormick, and N. Armendariz, “New insights in critical solder joint location”, Electronic Components and Technology Conference, 2005. Proceedings. 55th, 977 (2005).
[99] T. Y. Tee, H. S. Ng, D. Yap, X. Baraton, and Z. Zhong, “Board level solder joint reliability modeling and testing of TFBGA packages for telecommunication applications”, Microelectronics Reliability 43, 1117 (2003).
指導教授 吳子嘉(Tzu-chia Wu) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明