博碩士論文 101223012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.145.60.58
姓名 陳宇映(Yu-ying Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用掃描式電子穿隧顯微鏡研究羧基硫醇分子於銅(111)的吸附行為及結構
(note)
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用循環伏安法(CV)和掃描式電子穿隧顯微鏡(EC-STM)探討羧基硫醇分子於銅(111)上之吸附行為及平面結構。實驗著重於三種不同分子Mercaptoacetic acid (MAA)、3-Mercaptopropionic acid (MPA)、4-mercaptobutyric acid (MBA)進行兩種濃度(100 µM及1 µM)及兩種 pH值(1、4)下分子吸附的結構。
  第一部份研究在電解液為pH1硫酸系統下吸附羧基硫醇分子, MAA於銅(111)電極上的自組裝吸附及結構。在高濃度100 µM條件下,在0 ~ -0.3 V電位區間時,吸附分子形成規則的花紋狀(moiré pattern)結構,其覆蓋度為0.4。MAA分子可能以其SH官能基在脫氫後與銅形成離子鍵,分子直立於銅(111)載體上。而低濃度1µM條件下,MAA分子在-0.25 ~ -0.35 V間以(√3 × √3) R30°吸附結構,其覆蓋度為0.33;當將電位移至-0.35 V(分子脫附前),MAA分子轉換為條紋結構。而MPA及MBA分子在高濃度100µM條件下,多層的吸附分子形成薄膜,高解像掃描顯示分子無整齊有序的結構。而在低濃度1µM條件下,MPA及MBA分子在電位區間-0.25~ -0.35 V以(√3 × √3)R30°吸附結構,其覆蓋度為0.33; 於較負電位-0.35 V(分子脫附前),MPA及MBA分子同樣形成條紋的吸附結構。這些結構的變化皆為可逆的過程。
  在含氯的條件下,氯會和MAA分子競爭吸附於銅電極上,電位是控制吸附的重要參數,STM結果顯示在正電位下,吸附物形成整齊排列的moiré pattern結構,此為MAA的吸附結構;負電位下,moiré pattern 排列明顯變亂,而銅平台上出現整齊的條紋狀結排列,其特徵和氯的結果一致。
  第二部份研究在了解pH對MAA及MPA分子在銅電極上吸附的影響,在此將硫酸電解液的pH值提高到4,對MAA而言,從0到-0.3 V間,分子密集排列形成moiré pattern結構,在較負電位(-0.3 ~ -0.5 V) 分子由高覆蓋度的moiré pattern結構轉變為較低覆蓋度的(√7 × √7)R19.1°,其覆蓋度為0.29,之後在-0.5到-0.7 V間,分子結構繼續轉變成(2√7 × 2√7)R19.1°,其覆蓋度為0.11。在MPA分子部份,0 V到-0.3 V電位區間為密集排列形成整齊結構,將電位調整到-0.3 V到-0.5 V,MPA分子由亮點結構轉變為(√7×√7)R19.1°,更負電位觀察,-0.55 V到-0.8 V,MPA分子結構吸附由(√7×√7)R19.1°轉變成(2√7 ×2√7)R19.1°。這些結構隨電位的變化和單純硫原子的行為相同,因此推測硫醇分子的吸附主要決定再於硫端與銅載體間的作用力,短碳鏈及羧酸官能基並不影響其吸附結構。

摘要(英) In situ scanning tunneling microscope (EC-STM) and cyclic voltammetry (CV) were used to examine the adsorption behavior and structure of carboxyl thiol molecules on Cu(111). In particular, three molecules with different chain length, mercaptoacetic acid (MAA), 3-Mercaptopropionic acid (MPA), 4-mercaptobutyric acid (MBA), were deposited onto Cu(111) electrode from aqueous solutions containing 100 and 1 μM of these three molecules. In situ STM provided molecular – resolution views of the spatial structures of these molecular adlayers as a function of potential.
The structures of carboxyl thiol molecules adsorbed on Cu(111) electrode were examined in pH1 sulfuric acid containing 100 μM MAA, MPA and MBA, respectively. These admolecules were adsorbed in compact, long - range ordered moiré structures at coverage () of 0.41 (number of admolecules/number of Cu atoms). MAA molecules were presumed to adsorb via their SH end, forming ionic bond with the Cu substrate. By contrast, MPA and MBA molecules tended to be adsorbed in multilayer in the presence of 100 μM molecules. High resolution STM imaging revealed largely disordered structures in these multilayer thin films. In electrolyte containing 1 μM of these molecules, results were nearly the same. They all formed ordered (√3 × √3)R30° ( = 0.33) between -0.25 ~ -0.35 V (vs. Ag/AgCl). Shifting potential negatively resulted in restructuring into a stripe phase before admolecules continued to desorb at E < -0.35 V. These phase transition events were reversible. Given the nearly same results observed with these molecules, chain length of thiol molecules had an insignificant effect on molecular structures.
The presence of chloride in the electrolyte appeared to complicate the adsorption of these molecules. Aided by molecular – resolution STM imaging, it is thought that MAA arranging in ordered moiré structure was adsorbed more strongly than chloride at positive potentials. However, shifting potential negatively resulted in displacement of the moire pattern with a striped phase attributable to adsorbed chloride.
  The adsorption of MAA and MPA in pH 4 sulfate media was examined with in situ STM. MAA molecules were adsorbed in the compact moiré structure between 0 to -0.3 V, which was converted the (√ 7 × √ 7) R19.1 °( = 0.29) structure when the potential was adjusted to -0.3 V, followed by another phase transition to (2√7 × 2√7) R19.1°( = 0.11) at -0.5 V. These results are essentially the same as those observed with sulfur adatoms on Cu(111) electrode, which suggests that S-Cu interaction was of prime importance in guiding the adsorption of thiol molecules on Cu(111). Chain length seemed to be secondary under the present conditions.
關鍵字(中) ★ 銅
★ 自組裝吸附
★ 硫醇分子
關鍵字(英) ★ STM
★ SAM
論文目次 摘要 ............................................................................................................................................. I
ABSTRACT ............................................................................................................................. III
誌謝 ........................................................................................................................................... V
目錄 .......................................................................................................................................... VI
圖目錄 ...................................................................................................................................... IX
表目錄 ................................................................................................................................... XIII
第一章、緒論 ............................................................................................................................ 1
1-1 銅金屬之發展 .................................................................................................... 1
1-2 陰離子特異性吸附 ............................................................................................ 1
1-3 自組裝單分子膜 (Self-Assembled Monolayers,SAMs) ................................ 2
1-3-1 自組裝分子膜的起源及發展 ..................................................................... 2
1-3-2 自組裝分子膜的原理及應用 ..................................................................... 2
1-4 相關文獻探討 .................................................................................................... 4
1-4-1 硫醇分子在金屬電極上的研究 ................................................................. 4
1-4-2 硫在金屬電極的吸附研究 ......................................................................... 6
1-5 研究動機 ............................................................................................................. 7
第二章、實驗部分 ..................................................................................................... 11
2-1 實驗藥品 .......................................................................................................... 11
2-2 實驗氣體 .......................................................................................................... 11
2-3 實驗金屬 .......................................................................................................... 11
2-4 實驗儀器 .......................................................................................................... 11
2-5 實驗步驟 .......................................................................................................... 13
第三章、PH1 硫酸系統下羧基硫醇分子在銅(111)吸附結構 ................................. 17
3-1 銅(111)電極在硫酸溶液下的CV 及STM 圖 ................................................. 17
3-2-1 MAA 吸附於銅(111)上之CV 圖 ............................................................. 17
3-2-2 MAA 吸附於銅(111)上STM 圖 ............................................................... 18
3-3 低濃度MAA 分子層吸附在銅(111) ............................................................... 21
3-3-1 MAA 分子吸附在銅(111)之CV 圖 ......................................................... 21
3-3-2 MAA 分子層吸附在銅(111)之STM 圖 ................................................... 21
3-4 高濃度MPA 分子層吸附在銅(111) ................................................................ 23
3-4-1 MPA 吸附於銅(111)上之CV 圖 .............................................................. 23
3-4-2 MPA 吸附於銅(111)上之STM 圖 ............................................................ 23
3-5 低濃度MPA 分子層吸附在銅(111) ................................................................ 25
3-5-1 MPA 吸附於銅(111)上之CV 圖 .............................................................. 25
3-5-2 MPA 吸附於銅(111)上之STM 圖 ............................................................ 25
3-6 高濃度MBA 分子層吸附在銅(111) ............................................................... 28
3-6-1 MBA 吸附於銅(111)上之CV 圖 ............................................................. 28
3-6-2 MBA 吸附於銅(111)上之STM 圖 ........................................................... 28
3-7 低濃度MBA 分子層吸附在銅(111) ............................................................... 28
3-7-1 MBA 吸附於銅(111)上之CV 圖 ............................................................. 28
3-8 銅(111)電極在硫酸系統中含氯離子下吸附MAA 的研究 ........................... 30
3-8-1 銅(111)電極在硫酸溶液含氯離子的CV 及STM 圖 ............................. 30
3-8-2 銅(111)電極在硫酸溶液含氯離子下吸附MAA 的CV 及STM 圖 ...... 32
3-9 結論 ................................................................................................................... 34
第四章、銅(111)電極在硫酸(PH=4)系統中吸附羧基硫醇分子的研究 ................. 80
4-1 銅(111)電極在硫酸溶液的CV 圖 ................................................................... 80
4-2 MAA 分子吸附在銅(111) ................................................................................ 80
4-2-1 MAA 吸附於銅(111)上之CV 圖 ............................................................. 80
4-2-2 MAA 吸附於銅(111)上之STM 圖 ........................................................... 81
4-3 MPA 分子層吸附在銅(111) ............................................................................. 84
4-3-1 MPA 吸附於銅(111)上之CV 圖 .............................................................. 84
4-3-2 MPA 吸附於銅(111)上之STM 圖 ............................................................ 84
4-3-2-1 低濃度 MPA 吸附於銅(111)上之STM 圖 ...................................... 84
4-3-2-2 高濃度 MPA 吸附於銅(111)上之STM 圖 ...................................... 87
4-4 結論 ................................................................................................................... 89
第五章、參考文獻 ................................................................................................... 107
圖目錄
【圖1-1】自組性單層膜之製備………………………………………………………8
【圖1-2】羧酸分子以離子鍵方式吸附在氧化鋁表面………………………………9
【圖1-3】矽烷以矽-氧共價鍵吸附於玻璃表面……………………………………9
【圖1-4】有機硫化物以硫-氧共價鍵方式吸附於金表面………………………...10
【圖2-1】銅電極前處理-電化學拋光………………………………………….........15
【圖2-2】CV 裝置圖………………………………………………………………....15
【圖2-3】STM 裝置圖………………………………………………………......…...16
【圖3-1】銅(111)電極在0.1 M H2SO4 中所測得之CV 圖………………………...35
【圖3-2】銅(111)電極吸附硫酸氫根的STM 圖…………………………………...36
【圖3-3】銅(111)電極在0.1 M H2SO4 + 100 μM MAA 的CV 圖……………….37
【圖3-4】100 μM MAA 分子在銅(111)上的吸附變化的STM 圖………………...38
【圖3-5】 100 μM MAA 在銅(111)面上形成moiré pattern 結構的過程變化STM
圖……………................................................................................................................39
【圖3-6】MAA 分子在銅(111)上吸附的過程示意圖……………………………..40
【圖3-7】 MAA 分子在銅(111)面上吸附的高解像圖…………………………....41
【圖3-8】在正電位下100 μM MAA 分子吸附於銅(111)面上的STM 圖……….42
【圖3-9】100 μM MAA moiré pattern 結構在銅(111)面上的變化過程…………..43
【圖3-10】銅(111)電極在0.1 M H2SO4 + 1 μM MAA 的CV 圖………………..44
【圖3-11】1 μM MAA 分子在銅(111)面上的吸附變化過程……………………...45
【圖3-12】 1 μM MAA 分子結構與硫酸氫根在銅(111)面上的共吸附STM 圖及模型
圖………………………………………………………………………………………46
【圖3-13】銅(111)上的1 μM MAA 分子條紋結構之STM 及模型圖……............47
【圖3-14】銅(111)電極在0.1 M H2SO4 + 100 μM MPA 的CV 圖…………….....48
【圖3-15】100 μM MPA 分子在銅(111)上0~9 分鐘內吸附變化的STM 圖.........................................................................................................................................49
【圖3-16】100 μM MPA 0~6 分鐘內在銅(111)上形成多層吸附過程....................50
【圖3-17】100 μM MPA 在銅(111)上的隨著電位變化的過程...............................51
【圖3-18】100 μM MPA 分子脫附後在往正電位調整使分子再次吸附的STM
圖....................................................................................................................................52
【圖3-19】以探針刮除1~2 層MPA 分子層的STM 圖……………………..…..53
【圖3-20】銅(111)電極在0.1 M H2SO4 + 1 μM MPA 的CV 圖...........................54
【圖3-21】1 μM MPA 分子在銅(111)面上的吸附變化過程...................................55
【圖3-22】1 μM MPA 在銅(111)上的分子結構STM 及模型圖............................56
【圖3-23】銅(111)上的1 μM MPA 分子條紋結構STM 圖...................................57
【圖3-24】10 μM MPA 在銅(111)上的吸附變化STM 圖......................................58
【圖3-25】10 μM MPA 在銅(111)面上的變化STM 圖..........................................59
【圖3-26】銅(111)上的10 μM MPA 亮點排列的STM 圖.....................................60
【圖3-27】銅(111)電極在0.1 M H2SO4 +100 μM MBA 之CV 圖........................61
【圖3-28】100 μM MBA 分子在銅(111)面上形成多層吸附過程,加入MBA 0~5 分鐘內
的STM 圖.....................................................................................................................62
【圖3-29】銅(111)電極在0.1 M H2SO4 +1 μM MBA 之CV 圖.............................63
【圖3-30】1 μM MBA 分子在銅(111)上隨時間變化吸附過程..............................64
【圖3-31】1 μM MBA 分子在銅(111)面上的吸附過程變化的STM 圖................65
【圖 3-32】1 μM MBA分子結構與硫酸氫根在銅(111)面上的共吸附高解像STM
圖...................................................................................................................................66
【圖3-33】銅(111)上1 μM MBA 分子條紋結構STM 及模型圖...........................67
【圖3-34】0.1 M H2SO4 + 1 mM KCl 之CV 圖........................................................68
【圖3-35】銅(111)電極在0.1 M H2SO4 + 1 mM KCl 中吸附過程的STM 圖........69
【圖3-36】銅(111)電極在0.1 M H2SO4 + 1 mM KCl 中結構的STM 圖................70
【圖3-37】銅(111)電極在0.1 M H2SO4 + 0.1 mM KCl 中吸附過程的STM 圖..........................................................................................................................................71
【圖3-38】銅(111)電極在0.1 M H2SO4 + 0.1 mM KCl 中的STM 圖........................72
【圖3-39】0.1 M H2SO4 + 1 mM KCl + 100 μM MAA 之CV 圖...............................73
【圖3-40】 銅(111)電極在0.1 M H2SO4 + 1 mM KCl + 100 μM MAA 下吸附的STM
圖......................................................................................................................................74
【圖3-41】 負電位下觀察1 mM KCl 及100 μM MAA 吸附過程的STM 圖
.........................................................................................................................................75
【圖3-42】 在0.1 M H2SO4 + 1 mM KCl + 100 μM MAA 條件下,高解像條紋吸附結構
的STM 圖.......................................................................................................................76
【圖3-43】在0.1 M H2SO4 中先加入1 mM KCl 觀察先Cl 結構後再加入100 μM MAA
的STM 圖......................................................................................................................77
【圖3-44】100μM MAA 在銅(111)平台上的變化的STM 圖……………………..78
【圖4-1】銅(111)電極在0.1 M K2SO4 + 0.1 mM H2SO4 之CV 圖………...............90
【圖4-2】0.1 M K2SO4 + 0.1 mM H2SO4(pH4)100 μM MAA 之CV 圖…………....91
【圖4-3】 pH4 溶液中吸附100 μM MAA 分子的STM 圖…………………….....92
【圖4-4】隨電位控制由S-moiré pattern 轉變(√7 ×√7)R19.1°結構的STM 圖
…....................................................................................................................................93
【圖4-5】MAA(√7 ×√7)R19.1°結構的STM 圖及模型圖…….................................94
【圖4-6】隨電位控制由(√7 ×√7)R19.1°轉變(2√7 ×2√7)R19.1°結構的STM 圖
........................................................................................................................................95
【圖4-7】MAA(2√7 ×2√7)R19.1°結構的STM 圖及模型圖....................................96
【圖4-8】MAA (2√7 ×2√7)R19.1°R 結構,往負電位脫附STM 圖…………..…..97
【圖4-9】0.1 M K2SO4 + 0.1 mM H2SO4(pH4)100 μM MPA 之CV 圖……….…...98
【圖4-10】銅(111)電極在pH4 溶液中吸附1 μM MPA 分子的STM 圖
……………………………………………………………………………….……......99
【圖4-11】 在含1 μM MPA 的pH4 溶液中,觀察 MPA 分子的隨電位改變的STM
圖……………………………………………………………………….……..............100
【圖4-12】pH4 溶液中MPA 分子(√7×√7)結構的STM 圖及模型圖.....................101
【圖4-13】pH4 溶液中MPA 分子(2√7×2√7)結構的STM 圖及模型圖.................102
【圖4-14】銅(111)上(2√7×2√7)R19.1°分子結構,隨著電位脫附的STM 圖
…………………………………………………………………………………............103
【圖4-15】100 μM MPA 在銅(111)上分子結構的STM 圖及模型圖….................104
【圖4-16】100 μM MPA 在銅(111)上隨著電位改變的STM 圖…………….……105
表目錄
【表1-1】低電阻率導電材料(Ag、Cu、Au、Al、W 等)之物理特性…….……....8
【表3-1】MAA、MPA、MBA 濃度與結構的比較……………………………......79
【表4-1】MAA、MPA 結構與電位的比較…………………….............................106
參考文獻 (1) P. Broekmann, M. Wilms, M. Kruft, C. Stuhlmann, and K. Wandelt, J.
Electroanal.Chem ., 1999, 467, 307 .
(2) Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. J. Colloid Interface.
Sci. 1946, 1, 513.
(3) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
(4) Decher, G.; Hong, J. D.; Schmit, J. Thin Solid Films 1992, 210-211,831.
(5) Wink, Th.; van Zuilen,; S. J.; Bult, A.; van Bennekom, W. P. Analyst.1997,122, 43R.
(6) Fenter, P.; Eisenberger, D.; Liang, K. S. Phys. Rev. Lett. 1993, 70,2447.
(7) Poter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am.Chem. Soc. 1987,
109, 3559.
(8) Poirier, G. E.; Tarlov, M. J.; Rushmeier, H. E. Langmuir 1994, 10,3383.
(9) Poirier, G. E.; Tarlov, M. J. J. Phys. Chem. 1995, 99, 10966.
(10) Poirier, G. E. Chem. Rev. 1997, 97, 1117.
(11) Hugh Rieley.; Gary K. Kendall; Robert G. Jones.; D. Phillip Woodruff. Langmuir 1999,
15, 8856-8866
(12) Vollmer, S.; Witte, G.; Wöll, C. Langmuir 2001, 17, 7560.
(13) Kondoh, H.; Saito, N.; Matsui, F.; Yokoyama, T.; Ohta, T. J. Phys.Chem. B 2001, 105,
12870.
(14) C. E. Täubert ;D. M. Kolb ; U. Memmert ; H. Meyer.J. Electrochem. Soc. 2007, 154, 6,
D293-D299.
(15) N.T.M. Hai ; H.T.M. Trung ; V. Grimaudo ; A. Fluegel ; M. Arnold, D. Mayer ; W.
Reckien ; Th. Bredow ; P. Broekmann. Electrochim. Acta.2012, 70, 286.
(16) T. M. T. Huynh; N. T. M. Hai; P. Broekmann. J. Electrochemical Society,
2013,160 ,12, D3063-D3069
(17) Yoon, H. A.; Materer, N.; Salmeron, M. A. Surf. Sci. 1997, 376, 254.
(18) Bömermann, J.; Huck, M.; Kuntze, J. Rauch, T.; Speller, S.; Heiland,
W. Surf. Sci. 1996, 357-358, 849.
(19) Speller, S.; Rauch, T.; Bömermann, J.; Heiland, W. Surf. Sci. 1999,441, 107.
(20) Domange, J. L.; Ouder, J. Surf. Sci. 1968, 11, 124.
(21) Ruan, L.; Stensgaard, I.; Besenbacher, F.; Jensen, F.; Læ gsgaard, E.
Ultramicroscopy 1992, 42-44, 498.
(22) Foss, M.; Feidenhans’l, R.; Nielsen, M.; Findeisen, E.; Buslaps, T.;
Johnson, R. L.; Besenbacher, F. Surf. Sci. 1997, 388, 5.
(23) Wahlström, E.; Ekvall, I.; Olin, H.; Lindgren, S.; Walldén, L. Phys.
Rev. B 1999, 60, 10699.
(24) Vericat, C.; Andreasen, G.; Vela, M. E.; Salvarezza, R. C. J. Phys.
Chem. B 2000, 104, 302.
(25) Gao, X.; Zhang, Y.; Weaver, M. J. J. Phys. Chem. 1992, 96, 4156.
(26) Sugimasa, M.; Inukai, J.; Itaya, K. J. Electrochem. Soc. 2003, 150,E110.
(27) Wang, D.; Xu, Q. M.; Wan, L. J.; Wang, C.; Bai, C. L. Surf. Sci. 2002,499, L159.
(38) Zeng, H. C.; McFarlane, R. A.; Mitchell, K. A. R. Phys. Rev. B 1989,
39, 8000.
(29) Bahr, C. C.; Barton, J. J.; Hussain, Z.; Robey, S. W.; Tobin, J. G.;
Shirley, D. A. Phys. Rev. B 1987, 35, 3773.
(30) Colaianni, M. L.; Chorkendorff, I. Phys. Rev. B 1994, 50, 8798.
(31) Driver, S. M.; Woodruff, D. P. Surf. Sci. 2001, 479, 1.
(32) Safarowsky, C.; Spaenig, A.; Broekmann, P.; Wandelt, K. Surf. Sci.
(33) Hugh Rieley; Gary K. Kendall; Robert G. Jones; D. Phillip Woodruff.Langmuir 1999,
15, 8856-8866
(34) D. Friebel; P. Broekmann ;K. Wandelt. Phys. Stat. Sol. A 2004.201. 861-869.
(35) A. Spaenig; P. Broekmann; K. Wandelt. Electrochim. Acta 2005,50,21, 4289-4296.
(36) Dong Wang;Qing-Min Xu;Li-Jun Wan;Chen Wang;Chun-Li Bai. Surface Science
2002,499, L159–L163
指導教授 姚學麟(Shueh-lin Yau) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明