以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:28 、訪客IP:18.119.124.202
姓名 馬正欽(Ernest P. Macalalad) 查詢紙本館藏 畢業系所 太空科學研究所 論文名稱 應用基於GPS 無線電掩星電離層模式於單頻基碼單獨差分GPS 定位
(Application of a GPS Radio Occultation Based Ionospheric Model to Single-Frequency Code-Based Stand-Alone and Differential GPS Positioning)檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 一個新的三維、連續且基於無線電掩星觀測的電離層模式,稱為台灣自主電離
層數值模式(TWIM),首次被應用於消除單頻C/A 碼虛擬距離(pseudorange)觀測
中的絕對和差分電離層延遲。為了評估其表現,使用了兩種定位演算法即單獨
定位和差分定位。TWIM 模式產生的垂直全電子含量(VTEC)圖及定位結果也與其
他模式比較,如Klobuchar(KLB)和全球電離層圖(GIM)。研究顯示,使用TWIM 模
式和GIM 產生之全球和區域全電子含量圖能呈現出電離層的詳細結構,特別是在
低緯度區域。而KLB 模式僅提供基本的電離層晝夜及地理特徵。TWIM 模式也提
供了三維電離層電子密度且顯著地改善定位。在使用單獨定位方面,相較於GIM,
TWIM 模式提供優良的定位結果,且在低仰角衛星遮蔽下優於KLB 模式。基於平
均表現評價各個包含所有站點與所有天數觀測的模型,TWIM 模式表現良好且能
提供公尺到數十公分等級的準確度,可比擬於使用GIM 的結果。KLB 模式排第三
並甚至在某些時候表現較UNC 差。在差分定位方面,在所有基線上的每日水平方
向平均誤差與水平方向基線因子呈現高度正線性相關。當使用來自電離層模式
的差分電離層校正時,此種效應大幅減少,且在垂直方向上無影響。在跨越所
有季節及各種太陽活動的地磁寧靜條件下,使用單頻接收機進行差分GPS 定位時,
TWIM 模式甚至可以提供數十公分到公分等級的準確度。這也說明了,基於兩種
定位演算法,在準確度遞增的一般排序為KLB、TWIM 及GIM 模式。由TWIM 模式
和GIM 表現的類似之處,證明了TWIM 模式適用於提供優良的電子密度和電子密
度梯度,可被推廣應用至其他大地測量學與太空科學。摘要(英) A new three-dimensional, continuous ionospheric model based on radio occultation
observation, called the TaiWan Ionospheric model (TWIM), is used for the first time to
remove absolute and differential ionospheric delays in single-frequency C/A code
pseudorange observations. To evaluate its performance, two positioning algorithms
namely stand-alone positioning and differential positioning are used. The VTEC maps
and positioning results using TWIM is compared with results using other models, such
as the Klobuchar (KLB) and the global ionospheric maps (GIM). It has been
demonstrated that global and regional TEC maps using TWIM and GIM exhibit a
detailed structure of the ionosphere, particularly at low-latitude region, whereas KLB
only provide the basic diurnal and geographic features of the ionosphere. TWIM can
also provide three-dimensional ionospheric electron density and improve positioning
significantly. Using the stand-alone positioning, it is shown that TWIM provides very
good positioning comparable to GIM and better than KLB even for low satellite elevation
masks. Based on the average performance rating of each model across all stations and
all days of observation, TWIM performs very well and can provide meter-to-decimeter
accuracy and its results is very comparable with the results using GIM. KLB is a far
third where occasionally performs even worse than UNC. In differential positioning,
daily horizontal mean errors for all baselines show a highly positive linear correlation
with the horizontal baseline vector. This effect is significantly reduced when using
differential ionospheric correction derived from ionospheric models, and does not take
effect along the vertical. TWIM can even provide decimeter-to-centimeter level accuracy
in differential GPS positioning for single-frequency receivers during geomagnetic quiet
conditions across all seasons and various solar activities. This shows that based on both
positioning algorithms the general order of increasing accuracy is KLB, TWIM, and GIM.
The similarity of the performance of TWIM and GIM demonstrates the applicability of
TWIM in providing quality electron density and electron density gradients, which can
be extended to other geodetic and space science applications.關鍵字(中) ★ GPS
★ DGPS
★ TWIM
★ GNSS關鍵字(英) ★ GPS
★ Ionopshere Model
★ GNSS
★ TWIM
★ DGPS論文目次 1 Introduction ... 1
1.1 Background of the Study ... 1
1.2 Objectives ... 3
1.3 Assumptions, Scope and Limitations ... 4
2 Ionospheric Models ... 6
2.1 Klobuchar Model ... 8
2.2 Global Ionospheric Maps ... 10
2.3 TaiWan Ionospheric Model... 12
2.4 Ionospheric Delay ... 15
3 Stand-Alone GPS Positioning ... 17
3.1 Pseudorange Components ... 17
3.2 Pseudorange corrections ... 28
3.3 The Navigation Solution: Least Squares Adjustment ... 32
3.4 Dilution of Precision ... 37
3.5 Satellite-Dependent Weighting Function ... 38
3.6 Positioning Errors ... 39
3.7 Data and Method ... 40
3.8 Results and Discussion ... 41
4 Differential Positioning ... 60
4.1 Code-Based Single-Differenced DGPS Positioning ... 60
4.2 Data and Method ... 61
4.3 Results and Discussion ... 62
5 Web Application ... 79
5.1 Design Concept ... 79
5.2 Set-Up ... 79
5.3 Web Material ... 80
5.4 Sample Results ... 82
6 Conclusions ... 85
6.1 Stand-Alone Positioning ... 85
6.2 Differential Positioning ... 86
6.3 Web Application ... 88
6.4 Final Remarks ... 88
7 References ... 93
8 Appendices ... 96
8.1 Klobuchar Algorithm... 96
8.2 GIM and the IONEX Format... 99
8.3 Satellite Position Algorithm ... 106
8.4 The RINEX Format... 109參考文獻 Allain DJ (2009) Ionospheric Delay Correction for Single-Frequency GPS Receivers Ph.D.
Dissertation, University of Bath, UK
Allain DJ, Mitchell CN (2009) Ionospheric delay corrections for single-frequency GPS
receivers over Europe using tomographic mapping, GPS Solutions 13:141–151
Ashby N, Spilker JJ (1996) Introduction to Relativistic Effects, In: Global Positioning
System: Theory and Applications. Vol. I Eds. B. Parkinson and J.J. Spilker, Jr.,
American Institute of Aeronautics and Astronautics, 623–695
Borre K, Strang G (2012) Algorithms for Global Positioning. Wellesley-Cambridge Press,
Wellesley, MA
Camargo PDO, Monico JFG, Ferreira LDD (2000) Application of ionospheric corrections
in the equatorial regions for L1 GPS users. Earth, Planets and Space 52(1):1083–1089
Conley R, Cosentino R, Hegarty C, Kaplan E, Leva, de Haag M, Van Dyke K (2006)
Performance of Standalone GPS. In: Understanding GPS: principles and Applications.
Eds. E.D. Kaplan, Artech House Inc., Norwood. 237–319
Davies K (1990) Ionospheric Radio. Peter Peregrinus Ltd., London, UK
Dubey S, Wahi R, Gwal AK (2006) Ionospheric effects on GPS positioning. Advances in
Space Research 38:2478–2484
Goad CC, Goodman L (1974) A Modified Tropospheric Refraction Correction Model.
Paper presented at the American Geophysical Union Annual Fall Meeting, 12–17
December, San Francisco, CA, USA
Hatch R (1995) Relativity and GPS-II. Galilean Electrodynamics 6(4):73–78
Hernández-Pajares M, Juaan JM, Sanz J, Orus R, Garcia-Rig A, Feltens J, Komjathy
A, Schaer SC, Kranskowski A (2009) The IGS VTEC maps: A Reliable Source of
Ionospheric Information Since 1998. Journal of Geodesy 83:263–275
doi:10.1007/s00190-008-0266-1
Jin S, Wang J, Park PH (2005) An improvement of GPS height estimations: stochastic
modeling. Earth, Planets and Space 57:253–259
Jin XX, de Jong CD (1996) Relationship between Satellite Elevation and Precision of
GPS Code Observations. Journal of Navigation 49(2):253–265
doi:10.1017/S0373463300013357
Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users.
IEEE Transactions onAerospace and Electronic Systems AES 23(3):325–331
Klobuchar JA (1991) Ionospheric Effects on GPS. GPS World 2(4):48–51
Langley RB (1999) Dilution of precision. GPS World 10(5):52–59
Leick A (2004) GPS satellite surveying. 3rd Edition. John Wiley & Sons, Inc. New Jersey
Leva J, de Haag M, van Drake K (1996) Performance of Standalone GPS. In:
Understanding GPS: principles and Applications. Eds. E.D. Kaplan, Artech House
Inc., Norwood 237–319
Macalalad EP, Tsai LC, Wu J, Liu CH (2013) Application of the TaiWan Ionospheric
Model to Single-Frequency Ionospheric Delay Corrections for GPS Positioning. GPS
Solutions 17:337–346 doi:10.1007/S10291-012-0282-8
Matsakis D (2007) The Timing Group Delay Correction (TGD) and GPS Timing Biases.
Proceedings of the 63rd Annual ION National Technical Meeting, 23–25 April, 2007,
Cambridge, Massachusetts, USA (Institute of Navigation, Alexandria, Virginia)
Misra P, Enge P (2012) Global Positioning System: Signals, Measurements, and
Performance. Ganga-Jumana Press, Lincoln, MA, revised second edition
Montenbruck O, Gill E (2000) Satellite Orbits: Models, Methods and Applications.
Spring-Verlag, Heidelberg
Ovstedal O (2002) Absolute Positioning with Single-Frequency GPS Receivers. GPS
Solutions 5(4):33–44
Rose J, Allain D, Mitchell C (2009) Reduction in the ionospheric error for a singlefrequency
GPS timing solution using tomography. Annals of Geophysics 52(5):469–
486
Schaer S (1999) Mapping and Predicting the Earth’s Ionosphere Using the Global
Positioning System, Ph.D. Dissertation Astronomical Institute, University of Berne,
Berne, Switzerland, 25 March
Schaer S, Gurtner W, Feltens J (1998) IONEX: The IONosphere Map Exchange Format
Version 1. Proceeding of the IGS AC Workshop, 9–11 February 1998, Darmstadt,
Germany.
Seeber G (2003) Satellite Geodesy. Walter de Gruyter GmbH & Co, Berlin
Spencer J, Frizzelle BG, Page PH, Voger JB (2003) Global Positioning System: a field
guide for the social sciences. Blackwell Publishing Ltd. Oxford
Tsai LC, Liu CH, Hsiao TY, Huang JY (2009) A near real-time phenomenological model
of ionospheric electron density based on GPS radio occultation data. Radio Science.
44:5, 44:RS5002, doi:10.1029/2009RS004154
Tsai LC, Liu CH, Huang JY (2010) Three-dimensional numerical ray tracing on a
phenomenological ionospheric model. Radio Science. 45, doi: 10.1029/2010RS004359
Tsai LC, Tien MH, Chen GH, Zhang Y (2014) HF Radio Angle-of-Arrival Measurements
and Ionosonde Positioning (2014) Terrestrial, Atmospheric and Oceanic Sciences 25:3,
401-413, doi: 10.3319/TAO.2013.12.19.01(AA)指導教授 蔡龍治(Lung Chih Tsai) 審核日期 2014-7-28 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare