博碩士論文 101223039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.220.182.13
姓名 蕭郁如(Yu-Ru Hsiao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以光譜學研究含稀土元素發光晶體內之能量轉移過程
相關論文
★ 二溴一氯甲烷在近紫外光區多光子光解機構之新研究★ 二溴甲烷及相關分子在近紫外光區多光子光解機構之研究
★ 以近紫外光光解二碘甲烷之光譜研究★ 以近紫外光光解碘仿及相關分子之光譜研究
★ 266 nm光解碘化甲烷類分子之可見光區放射光譜研究★ 266 nm光解碘化甲烷類分子之可見光區螢光分光光譜研究
★ 溴仿光解及其反應中間物之測定★ 溴化亞甲基之雷射誘導螢光分光光譜研究
★ 直流放電自由噴射分子束研究 鹵化亞甲基之螢光光譜★ 利用電子光譜研究雙鹵化亞甲基 之基態振動結構
★ 鹵化亞甲基分子之可見光區電子光譜研究★ 氯化亞甲基之新可見光區電子光譜研究
★ 雙溴化亞甲基分子之高靈敏度螢光分光光譜研究★ 高靈敏度溴化亞甲基之分光光譜與溴仿光解之放射光譜研究
★ 266 nm雷射光解溴仿之放射光譜★ 二氯化鍺之紫外光區螢光分光光譜研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用中溫水熱法合成不同比例稀土元素之R2(C8H10O4)3晶體(R= Y, Eu, Tb; C8H10O4= 1,4-cyclohexanedicarboxylate)和高溫固態合成法合成K4(UO2)Eu2Ge4O14。合成的化合物以單晶X光繞射鑑定晶體結構並以粉末X光繞射實驗鑑定晶體的純度,再以感應耦合電漿原子發射光譜做鑭系元素的定量。我們測量了這些晶體的光致放光光譜、激發光譜及其時間解析光譜以釐清其能量轉移機制與速率。藉由分析這些光譜資料,我們證明Eu2(C8H10O4)3 和Tb2(C8H10O4)3中之濃度淬熄現象為上能階之能量轉移,而混合Eu3+及Tb3+之化合物中,Tb3+轉移能量給Eu3+之機制則為光子間的能量轉移,並且在不同波長有不同之轉移速率和機制。在K4(UO2)Eu2Ge4O14化合物中,我們證明了UO22+會將能量轉移予Eu3+放光,且發現在不同激發波長其轉移速率也有所不同。
摘要(英) Mid-temperature hydrothermal and high-temperature solid-state synthesis techniques have been respectively used for the synthesis of R2(C8H10O4)3, (R=Y, Eu, Tb, and C8H10O4= 1,4-cyclohexanedicarboxylate) and that of K4(UO2)Eu2Ge4O14. Single-crystal and powder X-ray diffraction (XRD) data of these compounds have been obtained for confirming their structure and purity. The compositions of lanthanide elements were verified by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). We have recorded the photoluminescence (PL) spectra, excitation spectra, and time-resolved spectra for clarifying the energy transfer mechanisms and the transfer rates in these compounds. Based upon the analysis of our data, we show that the concentration quenching in Eu2(C8H10O4) as well as in Tb2(C8H10O4) is an energy migration process, while the energy transfer from Tb3+ to Eu3+ in the Eu3+/Tb3+ hybrid compounds is a photon energy transfer process and the Tb3+-Eu3+ energy transfer rate is wavelength-dependent. In addition, we have also confirmed that the Eu3+ emission in K4(UO2)Eu2Ge4O14 is activated by the sensitization of UO22+ and the energy transfer rate also highly depends on the excitation wavelength.
關鍵字(中) ★ 以光譜學研究含稀土元素發光晶體內之能量轉移過程 關鍵字(英)
論文目次 中文 摘要 ................................ ................................ ................................ ................ I
英文摘要 ................................ ................................ ................................ .............. II
謝誌 ................................ ................................ ................................ ..................... III
目錄 ................................ ................................ ................................ ..................... IV
表目錄 ................................ ................................ ................................ ................ VIIVII
圖目錄 ................................ ................................ ................................ .............. VIIIVIII
第一章 緒論 ................................ ................................ ................................ ......... 1
1-1鑭系元素與稀土元素 ................................ ................................ .............. 1
1-2鑭系元素的放光................................ ................................ ....................... 3
1-2-1銪離子的放光 ................................ ................................ ....................... 5
1-2-2鋱離子的放光 ................................ ................................ ....................... 7
1-3研究目標 ................................ ................................ ................................ ... 8
第二章 實驗 ................................ ................................ ................................ ....... 12
2-1實驗目標 實驗目標 ................................ ................................ ................................ . 12
2-2合成方法 合成方法 ................................ ................................ ................................ . 13
2-2-1水熱合成法 ................................ ................................ .......................... 13
2-2-2高溫固態法 ................................ ................................ .......................... 16
V
2-2-3晶體合成 ................................ ................................ .............................. 17
2-2-4使用藥品 ................................ ................................ .............................. 18
2-3鑑定方法 ................................ ................................ ................................ . 19
2-3-1單晶X光繞射 ................................ ................................ ..................... 19
2-3-2粉末X光繞射 ................................ ................................ ..................... 22
2-3-3感應耦合電漿原子發射光譜 ................................ ............................. 22
2-4光譜裝置簡介 ................................ ................................ ......................... 23
2-4-1光源 ................................ ................................ ................................ ..... 23
2-4-2單光儀 ................................ ................................ ................................ . 25
2-4-3偵測器 ................................ ................................ ................................ . 25
2-4-4示波器 ................................ ................................ ................................ . 27
2-5光譜技術簡介................................ ................................ ......................... 27
2-6光譜分析研究及實驗裝置 ................................ ................................ .... 29
第三章 結果與討論 ................................ ................................ ........................... 33
3-1 R2(CHDC) (CHDC)(CHDC) 3 ................................ ................................ .............................. 33
3-1-1晶體鑑定 ................................ ................................ ............................. 33
3-1-2晶體結構 ................................ ................................ ............................. 37
3-1-3放光譜 ................................ ................................ ............................. 39
3-1-4激發光譜 ................................ ................................ ............................. 41
VI
3-1-5 Eu 3+ 之放光衰退曲線 之放光衰退曲線 ................................ ................................ .......... 43
3-1-6濃度淬熄機制 濃度淬熄機制 ................................ ................................ ..................... 47
3-1-7 Tb 3+ 之放光衰退 之放光衰退 曲線 ................................ ................................ .......... 52
3-1-8 Tb 3+ 與 Eu 3+ 間能量轉移機制 間能量轉移機制 ................................ .............................. 55
3-1-9 Tb 3+ 與 Eu 3+ 間能量轉移之效率 和速間能量轉移之效率 和速間能量轉移之效率 和速間能量轉移之效率 和速................................ .............. 58
3-2 K2 K 4(UO (UO2)Eu )Eu2Ge 4O14 ................................ ................................ ................. 63
3-2-1化合物鑑定 化合物鑑定 ................................ ................................ ......................... 63
3-2-2晶體結構 ................................ ................................ ............................. 64
3-2-3放光譜 ................................ ................................ ............................. 66
3-2-4激發光譜 ................................ ................................ ............................. 67
3-2-5 UO 22+ 和 Eu 3+ 間的能量轉移 間的能量轉移 ................................ ............................... 68
第四章 結論 ................................ ................................ ................................ ....... 73
參考文獻 ................................ ................................ ................................ ............. 76
參考文獻 1. Evans, R. C.; Carlos, L. D.; Douglas, P.; Rocha J. J. Master. Chem. 2008, 18,1100.
2. Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. J. Chem. Phys.
1989, 90, 343.
3. An, Y.; Schramm, G. E.; Berry, M. T. J Luminesc. 2002, 97, 10.
4. Blasse, G.; Grabmaier, B. C. Luminescence Materials; Springer-Verlag: Barlin, 1994.
5. Huber, G.; Syassen, K.; Holzapfel, W. B. Phys. Rev. B. 1977, 15, 5123.
6. Luk, C. K.; Richardson, F. S. J. Am. Chem. Soc. 1975, 13, 6666.
7. Cotton, S. Lanthanide and Actinide Chemistry; Wiley: Chichester, U.K., 2006.
8. Pavitra, E.; Raju, G. S. R.; Ko, Y. H.; Yu, J. S. Phys. Chem. Chem. Phys. 2012, 14, 11296.
9. Dexter, D. L.; Schulman, J. H. J. Chem. Phys. 1954, 22, 1063.
10. 陳逸翔,國立中央大學化學系碩士論文(2012)。
11. 劉士溥,國立中央大學化學系碩士論文(2013)。
12. Wang, S. L.; Richardson, J.W. Jr. Z. Krystallogr. 1992, 20, 227.
13. Rabenau, A. Angew. Chem. Int. Ed. Engl. 1985, 24, 1026.
14. West, A. R. Solid State Chemistry and Its Applications 1987, John
Weiley&Sons, New York.
15. Johnson, J. W.; Jacobson, A. J. Angew. Chem. Int. Ed. Engl. 1983, 22,
412.
16. Carnall, W. T.; Doodman, G. L.; Rajnak, K.; Rana, S. J. Chem. Phys.
1989, 90, 343.
17. Rabenau, A. Angew. Chem. Int. Ed. 1985, 24, 1026.
18. Brown, D. C.; Altermann, D. Acta Crystallogr. 1985, B41, 244.
19. 陳孟琳,國立中央大學化學系碩士論文(2013)。
20. Yu, M.; Xie, L.; Liu, S.; Wang, C.; Cheng, H.; Ren, Y.; Su, Z. Inorg.
Chim. Acta. 2007, 360, 3111.
21. Martínez-Martínez, R.; Á lvarez, E.; Speghini, A.; Falcony, C.; Caldiño,U. Thin Solid Films 2010, 518, 5727.
22. Ramya, A. R.; Sharma, D.; Natarajan, S.; M. L. P. Reddy, M. L. P. Inorg. Chem. 2012, 51, 8818.
23. Shi, Q.; You, F.; Huang, S.; Peng, H.; Huang, Y.; Tao, Y. Chemical Physics Letters. 2014, 21.
24. Liu, S.-P.; Chen, M.-L.; Chang, B.-C.; Lii, K.-H. Inorg. Chem. 2013, 52, 3990.
25. Chen, P.-L.; Chiang, P.-Y.; Yeh, H.-C.; Chang, B.-C.; Lii, K.-H. Dalton
Trans. 2008, 1721.
指導教授 張伯琛(Bor-Chen Chang) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明